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Abstract

Optical quantum computing, quantum information and quantum communication
protocols rely on the generation of qubits encoded in optical systems, many of which
can be generate via the process of spontaneous parametric down-conversion. In this
thesis, we investigate down-converted states, in the context of quantum computing
and quantum information. In the high gain regime, a type I down-converted state
can be described as a single-mode squeezed vacuum state. We present an analysis of
photon-subtracted squeezed vacuum states as a resource for teleportation of coherent
state qubits and propose proof-of-principle experiments for the demonstration of
coherent-state teleportation and entanglement swapping. In the low gain regime,
the output state of a type II parametric down-converter can be approximated as
containing pairs of single photons, which can be used to herald the presence of one-
or two- photon Fock states in one mode, conditional on the detection of the same
number of photons in the other mode. We explore the effects of spectral filtering and
inefficient detection, of the heralding mode, on the count rate, g

(2) and purity of the
heralded state, as well as the fidelity between the resulting state and an ideal Fock
state. We also develop a technique for controlling the joint spectral profile of the
down-converted photons. By exploiting the dependence of the effective nonlinearity
of a periodically poled crystal on its poling order, we tailor the nonlinearity profile
and therefore the phase matching function of the down-converted photons. Finally,
we consider the validity of the Taylor series expansion of the unitary operator which
governs the evolution of the fields within the crystal, in comparison to the strictly
correct time-ordered Dyson series expansion.
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Chapter 1

Introduction

1.1 A Brief History of Quantum Optics

In the mid-to-late seventeenth century, a debate was being waged over the nature
of light. On one side, were René Descartes and Isaac Newton, positing that light
was a beam of particles. Newton argued that only particles could be reflected and
travel in straight lines, the way in which light was observed to do [1]. While Newton’s
theory of optics explained reflection and refraction, it could not explain certain other
observed properties of light, like diffraction, interference and polarisation.

On the other side of the debate were Robert Hooke, Christiaan Huygens and
Augustin-Jean Fresnel, who proposed that light was a wave, naturally explain-
ing diffraction and interference, in addition to reflection and refraction [2]. Al-
though Newton’s particle theory was favoured over Huygens’ wave theory for over a
century—reputedly, a result of Newton’s high regard—the tables eventually began
to turn. In the early 1800s, Thomas Young’s double slit experiment and the develop-
ment of James Clerk Maxwell’s famous equations in the later part of the century—
which were subsequently verified by experiments by Heinrich Hertz—finally brought
about wide acceptance of the wave theory. However, this long-awaited victory would
not last long.

In 1901, Max Planck successfully predicted the electromagnetic spectrum emitted
by a black body by assuming that light is emitted in discrete packets, i.e. quanta,
introducing the uncomfortable notion of wave-particle duality. This signified the
first quantum theory of light and the birth of quantum mechanics. Although Planck
believed that this assumption was only a convenient fudge, rather than a reflection
of the nature of reality, Einstein would later use the same assumption to explain the
photoelectric effect, for which he was awarded the Nobel Prize in 1921.

This was followed by a collection of ad hoc approaches, which, later became known
as the old quantum theory. In 1913, Niels Bohr explained the spectral lines of
the hydrogen atom by discretising the distances at which electrons could orbit the
nucleus, and soon after, Arnold Sommerfield quantized the z-component of angular

1



2 Introduction

momentum. A decade later, Louis-Victor de Broglie proposed that all matter has a
wave-like nature. He later shared the 1937 Nobel prize with George Paget Thomson
and Clinton Joseph Davisson, who experimentally confirmed de Broglie’s hypothesis
for electrons. In 1924, the photon was shown to exist as a distinct entity, via the
Compton effect [3].

Around the time following de Broglie’s proposal, quantum mechanics went through
an upheaval. Niels Bohr and Werner Heisenberg attempted to reconcile the strange
predictions of quantum mechanics with the everyday, seemingly classical world, via
what is now known as the Copenhagen interpretation of quantum mechanics. Heisen-
berg derived his uncertainty principle, which states that position and momentum
can not be known simultaneously with arbitrary precision. Along with Max Born,
he also developed the first complete and correct formulation of quantum mechan-
ics known as matrix mechanics. Erwin Schrödinger developed wave mechanics, and
Paul Dirac showed that it was equivalent to Heisenberg’s approach. Dirac formu-
lated the relativistic Schrödinger equation and developed bra-ket notation and John
von Neumann recast quantum mechanics in terms of linear Hermitian operators on
Hilbert spaces. Out of the initial turmoil, rose a robust mathematical framework
for the construction of physical theories: quantum mechanics as we know it today
[4, 5].

While quantum mechanics was being used to make predictions about the behaviour
of matter, it was still possible to explain most of the observed optical phenomena—
diffraction, interference, image formation, frequency doubling and wave mixing—
using the classical theory of electromagnetic radiation based on Maxwell’s equations
[6, 7]. Subsequent experiments with low numbers of photons could also be explained
equally well with classical or quantum theories, namely, Geoffrey Taylor’s single-
photon version of Young’s double slit experiment and Robert Hanbury Brown and
Richard Twiss’ photon bunching experiments. Even the newly-developed laser could
be described as a classical coherent state of light.

However, in 1963, Roy Glauber formulated a quantum theory of optical coherence
which predicted photon antibunching—a uniquely quantum phenomenon. In 1975,
Howard Carmichael and Daniel Walls predicted that light generated by fluorescence
from a two-level atom would exhibit antibunching; and the first non-classical effect
in optics was observed by H. Jeff Kimble, Mario Dagenais and Leonard Mandel in
1976, when they confirmed Carmichael and Walls’ predictions. Nine years later,
R.E. Slusher observed another prediction of quantum theory—squeezed light.

1.2 Quantum Information

As quantum mechanics was reaching maturity, another—seemingly unrelated—
discipline was evolving. In the 1930s, Alan Turing had developed the abstract notion



§1.2 Quantum Information 3

of what we now call a programable computer: the Turing machine [8]. Soon after,
the first computers constructed from vacuum tubes as their electronic components,
were developed [4]. In 1947, John Bardeen, Walter Brattain and Will Shockley
developed the transistor—a semiconductor device used to amplify and switch elec-
tronic signals—which would replace vacuum tubes as the active component, allowing
computers which were smaller, faster, cheaper to produce, required less power, and
were more reliable. They received the 1956 Nobel prize for their achievements. From
the development of computers, emerged the discipline of computer science and the
closely-related discipline of information theory, founded in 1948 by Claude Shannon
[9].

In the early 1980s, Richard Feynman and David Deutsch introduced the notion of a
computational device based upon the principles of quantum mechanics: a quantum
computer [4, 10]. Such a device addressed the difficulties of simulating quantum me-
chanical systems on classical computers. A decade later, Peter Shor demonstrated
that the prime factors of an integer could be efficiently solved on a quantum com-
puter1 [11, 12] and Lov Grover showed that the problem of conducting a search
through an unstructured space2 could also be sped up on a quantum computer [13].

Along with the notion of a quantum computer, arose the concepts of quantum in-
formation and quantum cryptography. A quantum bit, or qubit was introduced as
an analogue to the classical mechanism for storing information—the bit. In contrast
to a classical bit, the qubit can take on a superposition of the logical states 0 and
1. A qubit has the potential to be realised in a wide variety of physical systems, for
example, photon number or polarisation, electron number or electron spin, or the
spin of the nucleus of an atom.

With the advent of heralded single-photon sources, quantum optics became an ideal
testbed for some of the key concepts in quantum information. John Bell’s 1964
introduction of a test for the EPR paradox—a thought experiment contrived thirty
years earlier by Einstein, Boris Podolski and Nathan Rosen [14]—which relied on
the quantum concept of entanglement, was experimentally realised by Alain As-
pect, Phillipe Grangier and Gerard Roger in 1982 [15]. Quantum teleportation,
proposed by Charles Bennett et al. in 1993 [16]—which also relied on the concept
of entanglement—was experimentally demonstrated by Dirk Bouwmeester et al. in
1997 with the teleportation of a polarisation encoded qubit [17].

In 2001, Emanuel Knill, Raymond Laflamme, and Gerard Milburn launched the field
of linear optical quantum computing, by showing that scalable quantum computing
is possible with single-photon sources, linear optical elements, and single-photon

1This would have implications for bank security, which presently relies on the assumption that
it takes a long time for a classical computer to factor a large number.

2For example, finding a particular phone number in a phone book without knowing the corre-
sponding name.
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detectors [18]. Two years later, Jeremy O’Brien et al. [19], and independently
Pittman et al. [20], demonstrated a controlled-not gate—an entangling gate crucial
for quantum computation—using only linear optical elements.

1.3 Optical Qubits

Optical quantum computing, quantum information and quantum communication
protocols rely on the generation of qubits encoded in optical systems. Some typical
examples include single- or multi-photon qubits, coherent-state qubits or qubits en-
coded in the position and momentum eigenstates of the electromagnetic field—all of
which can be generated by the process of spontaneous parametric down-conversion—
a nonlinear optical process in which a photon from a pump laser, incident on a
nonlinear birefringent crystal, converts into two single photons under conservation
of energy and momentum.

In the low-gain regime, the output state of a parametric down-converter can be
approximated as a pair of two single photons. The experiments by Bouwmeester et
al., O’Brien et al. and Pittman et al., as well as many others, have made use of
single photons generated using this process. However, using higher pump powers,
the output state can also be described as a squeezed state, allowing the heralding
of higher-order photon-number states. Superpositions of coherent states, known as
kitten states, can be approximated by subtracting photons from the output squeezed
state, as was shown in references [21, 22]. Position and momentum eigenstates can
also be approximated by strongly squeezed states.

This thesis represents my contribution to the understanding and characterisation
of states generated by this presently indispensable process, in the context of quan-
tum computing and quantum information. The basic concepts and formalisms used
throughout this thesis are presented in Chapter 2. The rest of the thesis can be
roughly separated into two parts.

The first part, consisting of Chapter 3, is devoted to the analysis of Schrödinger
kitten states, generated by the photon-subtraction process mentioned above, as a
resource for the teleportation of coherent state qubits. Teleportation can be used
as a building block for a number of single- and multi-qubit gates—and is itself
the identity gate. A single-photon-subtracted squeezed vacuum state is only an
approximation to a kitten state—albeit an extremely good one at low amplitudes—
and it is important to determine the parameters under which this approximate state
serves as an adequate resource state for performing quantum gates.

The larger, second part of this thesis, encompassing Chapters 4, 5 and 6, deals with
the spectral properties of the states generated by parametric down-conversion. The
down-converted photons are typically entangled in the frequency degree of freedom,
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a characteristic which is not considered when treating the output in a simplified
single-frequency-mode picture, as was done in Chapter 3.

Chapter 4 models the creation of one- and two-photon states. The detection of n

photons in one output mode3 of a type II down-converter heralds the presence of
n photons in the other mode. However, spectral entanglement, combined with the
low spectral resolution of the heralding detector, renders the heralded state mixed
in frequency—an undesirable consequence. The effects of spectral filtering of the
heralding state are analysed to determine an optimal method for generating pure
photon-number states. In particular, higher-order down-conversion events in the
form of four photons are considered, as they may have adverse effects on the success
of spectral filtering. In addition, by considering four-photon states, the heralding of
two-photon number states can be analysed.

Chapter 5 deals with controlling the joint spectral profile of the down-converted
photons. The profile depends on a number of parameters, namely, the spectral profile
of the input pump laser; the group velocity conditions which themselves depend on
the composition of the down-conversion crystal; and the profile of the phase matching
function, which is related, via the Fourier transform, to the nonlinearity profile of the
down-conversion crystal. The first two aspects have been studied extensively—see
for example [23, 24, 25, 26, 27, 28, 29, 30, 31, 32]. The third is the focus of Chapter
5. By exploiting the dependence of the effective nonlinearity of a periodically poled
crystal on its poling order, it is possible to tailor a nonlinearity profile and therefore
the phase matching function of the down-converted photons. The most immediate
application of this technique may be the generation of pure photon-number states.
The design of a custom poled crystal with a Gaussian profile was performed in
collaboration with Alessandro Fedrizzi, an experimental physicist, who verified the
profile of the down-converted photons from the custom poled crystal using a two-
photon interference experiment. These experimental results are also presented.

Chapter 6 considers the multi-mode Hamiltonian that governs the evolution of the
fields inside the crystal. If the Hamiltonian does not commute with itself at all
times—as is the case for the multimode down-conversion Hamiltonian—then the
expansion of the evolution operator must take the form of the time-ordered Dyson
series, as opposed to the much simpler Taylor series. By expanding the evolution
operator to third order, the conditions under which the Taylor series is a valid
approximation are revealed. In addition, some new and interesting behaviour is
predicted.

3The photons are typically down-converted into two orthogonal polarisation modes and then
distributed into different spatial modes using a polarising beamsplitter.
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Chapter 2

Basic Concepts and Formalisms

2.1 Quantum Mechanics

2.1.1 Pure and Mixed States

In quantum mechanics, a physical state can be represented by a state vector in a
complex vector space [5]. Using Dirac, or ket, notation, we write such a state as |ψ�.
A quantum system whose state |ψ� is known exactly is said to be in a pure state.

We can also represent a quantum state as a density operator, which for a pure state,
is denoted as ρ = |ψ��ψ|. If ρ is not in a pure state, then it is said to be in a mixed
state. A mixed state can be written as ρ =

�
i
pi|ψi��ψi| where ρ is a mixture of

the states |ψi� with probabilities pi. A mixed state can be thought of as a classical
probability distribution of pure states. Related to this is a property of quantum
states known as the purity, defined as

P = Tr[ρ2] . (2.1)

If P = 1, then ρ is in a pure state while if P < 1, ρ is in a mixed state [4].

2.1.2 Quantum Dynamics

Solutions to the Schrödinger Equation for the State Ket

To study the evolution of a state, we want to know how it changes under a time
displacement t0 → t. This can be defined in terms of the time-evolution operator
Û(t, t0)

|ψt0 ; t� = Û(t, t0)|ψt0� (2.2)

The Schrödinger equation is the fundamental equation for the time-evolution oper-

7
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ator. Everything that has to do with time development follows from this equation.

i� ∂

∂t
Û(t, t0) = ĤÛ(t, t0) , (2.3)

where Ĥ is the operator that corresponds to the total energy of the system, known
as the Hamiltonian. Equation 2.3 is equivalent to

i� ∂

∂t
|ψt0 ; t� = Ĥ|ψt0 ; t� , (2.4)

when applied to a ket. If we are given Û(t, t0) and we know how it acts on |ψt0�,
we can circumvent equation 2.4 and simply apply Û(t, t0) to |ψt0�. There are three
cases for formal solutions to the Schrödinger equation.

Case 1: If the Hamiltonian is independent of time, the solution to the Schrödinger
equation is

Û(t, t0) = e−
i
� Ĥ

. (2.5)

Case 2: If the Hamiltonian is time-dependant and it commutes with itself at all
times, i.e. [Ĥ(t1), Ĥ(t2)] = 0, the solution to the Schrödinger equation is

Û(t, t0) = e−
i
�

R t
t0

dt
�
Ĥ(t�)

. (2.6)

Case 3: If the Hamiltonian is time-dependant and does not commute with itself at
all times, i.e. [Ĥ(t1), Ĥ(t2)] �= 0, the solution to the Schrödinger equation is

Û(t, t0) = T e−
i
�

R t
t0

dt
�
Ĥ(t�)

. (2.7)

where T is the time ordering operator. Equation 2.7 can be expanded into what is
sometimes known as the Dyson series.

Û(t, t0) = 1 +
∞�

n=1

�
− i

�
�n

�
t1

t0

dt1

�
t2

t0

dt2 . . .

�
tn−1

t0

dtnĤ(t1)Ĥ(t2) . . . Ĥ(tn) . (2.8)

The difference between Cases 2 and 3 in spontaneous parametric down-conversion
(see Section 2.4) will be the subject of Chapter 6.

2.1.3 Simple Harmonic Oscillator

The basic Hamiltonian for the simple harmonic oscillator is [5]

Ĥ =
p̂
2

2m
+

mω2
x̂

2

2
(2.9)

Agata Branczyk
t
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where ω is the angular frequency of the classical oscillator. The Hermitian operators
x̂ and p̂ are the position and momentum operator respectively. We now define two
non-Hermitian operators,

â =
�

mω

2�

�
x̂ +

ip̂
mω

�
, â

† =
�

mω

2�

�
x̂− ip̂

mω

�
, (2.10)

known as the annihilation and creation operators respectively. These operators
satisfy the commutation relation [â, â

†] = 1. We also define the number operator
N̂ = â†â and can now write the Hamiltonian in equation 2.9 as

Ĥ = �ω
�
N̂ +

1
2

�
(2.11)

2.1.4 Fock States

A Fock state, also known as a number state, is a state with a well defined number
of particles. We denote a Fock state as |n� where n is the number of particles in
the state. |n� is an eignestate of the Hamiltonian for the simple harmonic oscillator
[33], i.e.

Ĥ|n� = �ω
�
n +

1
2

�
|n� (2.12)

Fock states have the following properties

N̂ |n� = n|n� , Ĥ|0� =
�ω

2
|0� (2.13)

and can be generated by repeated application of the creation operator â
† on the

vacuum state

|n� =
(â†)n

√
n!

|0� . (2.14)

As their names suggest, annihilation and creation operators have the following effect
on number states

â|n� =
√

n|n− 1� , â
†|n� =

√
n + 1|n + 1� . (2.15)

2.1.5 Coherent States

The coherent state is an eigenstate of the annihilation operator [6].

â|α� = α|α� , (2.16)
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and can be generated by operating D(α) on the vacuum state

|α� = D̂(α)|0� , (2.17)

where D̂(α) = e−|α|2/2eαâ
†e−α∗â is the displacement operator. Coherent states con-

tain an indefinite number of particles and can be expanded in terms of the number
states

|α� = e−|α|
2
/2

∞�

n=0

αn

√
n!
|n� . (2.18)

Coherent states are minimum-uncertainty states and have equal noise in both x̂ and
p̂ quadratures. They can be approximated by the field of a laser, as will be discussed
in section 2.3.1.

2.1.6 Squeezed States

Squeezed states are a general class of minimum-uncertainty states, for which the
noise in one quadrature is reduced compared with a coherent state. In order to
satisfy the requirements of minimum-uncertainty, the noise in the other quadrature
must be greater than that of a coherent state. Squeezed states may be generated
using the unitary squeezing operator [6]

Ŝ(ε) = e
1
2 (ε∗â2−εâ†

2
)
, (2.19)

where ε = re2iφ. The squeezing operator attenuates one component of the complex
amplitude and it amplifies the other component. The degree of attenuation and
amplification is determined by the squeezing factor, or squeezing parameter, r = |ε|.
The angle φ determines the axis along which squeezing occurs. The squeezed state
|α, ε� is obtained by first squeezing the vacuum and then displacing it

|α, ε� = D̂(α)Ŝ(ε)|0� . (2.20)

The squeezing operator can also be applied to number states to give squeezed number
states

|n, ε� = Ŝ(ε)|n� . (2.21)

2.1.7 Projective Measurements

A projective measurement is a measurement which projects a system onto an
eigenspace of an observable M̂ . The observable has the following spectral decompo-
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sition:

M̂ =
�

m

P̂m (2.22)

where P̂m is the projector onto the eigenspace of M̂ with eigenvalue m [4].

If we were to measure the state |ψ�, the probability of getting the result m would
be given by

pm = �ψ|P̂m|ψ� (2.23)

and given that the outcome m occurred, the state of the system immediately after
measurement is

P̂m|ψ�√
pm

. (2.24)

We will sometimes use the phrase, ‘to measure in a basis {|m�}’. This means to
perform a projective measurement with projectors P̂m = |m��m|.

2.1.8 Normalised Second-order Correlation Function

For a single-mode quantum mechanical field, the normalised second order correlation
function, sometimes called the “g two”, is defined as [6]

g
(2) =

�â†â†ââ�
�â†â� = 1 +

V (n)− n̄

n̄2
(2.25)

where V (n) is the variance in the photon number and n̄ is the mean. For a coherent
state, g

(2) = 0. For a single-photons state g
(2) = 1 while for a number state with

n > 2, g
(2) = 1− 1/n.

2.1.9 Wigner Function

The Wigner function is a quasi-probability distribution [6], and can be defined as

W (x) =
1
π2

�
exp(η∗α− ηα∗)χ(η)dη (2.26)

where

χ(η) = Tr[ρeηâ
†−η∗â] (2.27)
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is the symmetrically ordered characteristic function. It is analogous to the phase
space probability distribution for a classical particle, however, due to the uncertainly
principle, the Wigner function does not satisfy the properties of a conventional
probability distribution. For example, the Wigner function can be negative, which
is often seen as a signature of a quantum state.

Coherent State

For a coherent state |α�, the Wigner function is

W (x, p) =
2
π

exp
�1

2
|α− α0|2

�
(2.28)

=
2
π

exp
�
−1

2
�
(x− x0)2 + (p− p0)2

��
, (2.29)

where x = Re[α] and p = Im[α].

Squeezed State

For a squeezed state, the Wigner function is

W (x, p) =
2
π

exp
�
−1

2
�
(x− x0)2e−2r + (p− p0)2e2r

��
, (2.30)

where r is the squeezing parameter.

Fock State

The Wigner function for a Fock state |n� is

W (x, p) =
2
π

(−1)n
Ln

�
4(x2 + p

2)
�
e−2(x2+p

2)
, (2.31)

where Ln(y) is the Laguerre polynomial.

2.2 Qubit Formalism and Quantum Information

Classical computation and classical information revolve around the fundamental
concept of a mathematical object called a bit1. A bit can be realised as a physical

1A bit is a binary digit.
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system with two distinct states, 0 or 1. In quantum computation and quantum
information, we make use of the analogous quantum bit or the qubit. A two-level
system can be assigned the state |0� or |1�, where {|0�, |1�} is an orthonormal basis,
which correspond to the classical states 0 and 1 [4]. An unusual property of the
qubit is that it can also take on states which are in a superposition of |0� and |1�, a
phenomenon that is a characteristic of quantum physics. Such a state can be written
as a linear combination of states

|ψ� = α|0� + β|1� (2.32)

where α and β are complex numbers. The state |ψ� is required to be a unit vector,
�ψ|ψ� = 1, therefore it is a requirement that |α|2 + |β|2 = 1. This is often known as
the normalisation condition for state vectors. We can also represent |ψ� in vector
form as

|ψ� =
�

α
β

�
or �ψ| = [α∗ β∗] . (2.33)

Alternatively, we can represent a state |ψ� as a density operator

ρ = |ψ��ψ| (2.34)
= (α|0� + β|1�) (α∗�0|+ β∗�1|) (2.35)
= |α|2|0��0|+ |β|2|1��1|+ αβ∗|0��1|+ α∗β|1��0| (2.36)

or as a density matrix

ρ =
�
|α|2 αβ∗

α∗β |β|2
�

. (2.37)

The presence of off-diagonoal elements in ρ is the defining feature of coherence. In
a completely mixed state, there are no off-diagonal elements.

2.2.1 The Pauli Matrices

The Pauli matrices are 2 × 2 matrices that are often used in quantum information
and quantum computation. They can be used to make transformations on states
and to represent observables. The Pauli matrices are

I =
�

1 0
0 1

�
X =

�
0 1
1 0

�

Y =
�

0 −i
i 0

�
Z =

�
1 0
0 −1

�
.

(2.38)
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I is known as the identity matrix while X and Z are sometimes referred to as a bit
flip and a phase flip, respectively. Y is equal to XZ, up to an overall, irrelevant
phase, and can be thought of as both a bit flip and a phase flip. The Pauli matrices
are Hermitian (H† = H) and unitary (U †

U = I), which makes them useful in
operator expansions.

2.2.2 Quantum Fidelity

In quantum information theory, the fidelity is a measure of the distance between
two quantum states. The fidelity between two states ρ and σ is defined to be

F (ρ, σ) =
�
Tr[

�
ρ1/2σρ1/2]

�2
. (2.39)

If σ = |ψ��ψ| is a pure state, we can reduce equation 2.39 to a much simpler form

F (|ψ�, σ) = Tr[�ψ|σ|ψ�|ψ��ψ|] = �ψ|σ|ψ� . (2.40)

The fidelity ranges between 0 for orthogonal states and 1 for identical states. The
fidelity will be used extensively throughout this thesis as a measure of success for
various schemes. In such cases, the fidelity is usually taken between the desired ideal
output state and the actual output state.

2.2.3 Quantum Entanglement

Entanglement is a property of a quantum mechanical state of two (or more) systems
where the entangled state can not be written as a product state of its component
systems. The Bell states, introduced in Section 2.2.4, are examples of maximally
entangled states. Entanglement plays a crucial role in quantum information and
computation, for example, in teleportation and superdense coding [4]. A number of
methods exist to quantify entanglement of an entangled state. In this thesis, we use
the entropy of entanglement, defined as

E(ρ) = −Tr[ρlog2ρ] . (2.41)

The entropy of entanglement is valid only for pure bipartite states. It ranges from
0 for a product state to log2 N for a maximally entangled state of two N -state
particles.
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2.2.4 Bell States

The Bell states are maximally entangled two-qubit states and are used extensively
in quantum information and quantum computation. The four Bell states are

|Φ+�AB =
1√
2
(|0�A|0�B + |1�A|1�B) , (2.42)

|Φ−�AB =
1√
2
(|0�A|0�B − |1�A|1�B) , (2.43)

|Ψ+�AB =
1√
2
(|0�A|1�B + |1�A|0�B) , (2.44)

|Ψ−�AB =
1√
2
(|0�A|1�B − |1�A|0�B) . (2.45)

2.2.5 Quantum Teleportation

Quantum teleportation allows the transfer of an unknown quantum state from one
party to another without the direct transfer of any quantum information between
the two parties. The required resources are: a shared bipartite entangled state; an
apparatus to distinguish the four Bell states and; a classical channel over which
classical information can be sent.

Consider two parties, Alice and Bob. They both have one half of the Bell state
|Φ+�AB = 1√

2
(|0�a|0�b + |1�a|1�b), which will serve as their entangled resource state.

Alice possesses an unknown qubit state |φ�c = α|0�c + β|1�c which she wants to
transfer to Bob. The combined state of the system can be written as

|ψ� = |Φ+�ab|φ�c (2.46)

=
1√
2

�
α|0�a|0�b|0�c + α|1�a|1�b|0�c + β|0�a|0�b|1�c + β|1�a|1�b|1�c

�
(2.47)

=
1
2

�
|Ψ+�ac(α|0�b + β|1�b) + |Ψ−�ac(α|0�b − β|1�b)

+ |Φ+�ac(α|1�b + β|0�b) + |Φ−�ac(α|1�b − β|0�b)
� (2.48)

Writing the combined state in the form shown in equation 2.48, we can see that
if Alice were to measure the two qubits in her possession, A and C, in the Bell
basis, she would project Bob’s state into the original state α|0�b +β|1�b, up to local
single-qubit operation. The final step for Alice is to send a classical message to Bob
advising him of which measurement result she obtained. With this knowledge, Bob
knows which operations to apply to his state to recover the exact quantum state
that Alice began with. These operations are I, Z, X and XZ (see Section 2.2.1),
given the measurement results |Ψ+�ac, |Ψ−�ac , |Φ+�ac and |Φ−�ac respectively.
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2.3 Quantum Optics

2.3.1 Coherent State Encoding for Optical Quantum Computing

In optics, the field of a laser is a good approximation to a classical sinusoidal wave
and therefore, a coherent state of the simple harmonic oscillator, which describes an
oscillating field. Consider two coherent states |α� and |−α�. These states are not
orthogonal, but their overlap �α|−α� = e−2|α|2 decreases exponentially with |α| and
for |α| = 2 is practically zero. We can encode our logical basis in these two states
such that |0� ≡ |α� and |1� ≡ |−α�, so that a general qubit state is represented by
[34]

|ψ� = µ|0� + ν|1� ≡ µ|α� + ν|−α� . (2.49)

2.3.2 Schrödinger Cat States

Schrödinger’s cat paradox is a gedankenexperiment which emphasises the unusual
consequences of extending the concept of superposition to macroscopically distin-
guishable objects [34]. A coherent state is the most “classical” of all quantum states,
and a superposition of two macroscopically distinguishable, i.e. well-separated, co-
herent states is referred to as a cat state. Consider the states

|even� = N+(|α� + |−α�) , (2.50)
|odd� = N−(|α� − |−α�) , (2.51)

where N± = 1/

�
2(1± exp(−2|α|2)). These states are known as even and odd cat

states because they contain only an even or odd number of photons

|even� = 2N+e−|α|
2
/2

∞�

n=0

α2n

√
2n!

|2n� , (2.52)

|odd� = 2N−e−|α|
2
/2

∞�

n=0

α2n+1

�
(2n + 1)!

|2n + 1� . (2.53)

2.3.3 Photons as Fock States

We define the creation operator for a photon with a spectral distribution ψ(ω) as
[35, 36]:

Â
†
ψ =

�
dωψ(ω)â†(ω) . (2.54)
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Â
†
ψ satisfies all the standard bosonic commutation relations, such as

[Âψk
, Â

†
ψk�

] = δk,k� , where ψk(ω) and ψk�(ω) are orthogonal spectral functions, i.e.�
ψk(ω)ψk�(ω)dω = δk,k� . An n-photon state can be written as a Fock state.

|n;ψ� =
1√
n!

(Â†
ψ)n|0� . (2.55)

We emphasise the distinction between the states Â
†
ψk

Â
†
ψk
|0� =

√
2|2;ψk� and

Â
†
ψk

Â
†
ψk�

|0� = |1;ψk�|1;ψk�� for k �= k
�, where the former is a two-photon Fock

state and the latter consists of two single-photon Fock states.

2.3.4 Beamsplitters

A beamsplitter is a partially reflective optical element which reflects some of the
incident light and transmits the rest (assuming no absorption). The amount of light
reflected is represented by the intensity reflection coefficient �.

A beamsplitter can be modeled by the transformation

â
† → √

η ĉ
† +

�
1− η d̂

† (2.56)

b̂
† → −

�
1− η ĉ

† +
√

η d̂
† (2.57)

where â
† and b̂

† represent the beamsplitter input modes, ĉ
† and d̂

† represent the
output modes, and η is the transmission probability.

The ‘−’ sign comes from the choice of beamsplitter convention. The usual choice is to
set three relative phases to zero and the fourth to π. The normal explanation is that
one of the reflected waves has a phase shift of 180◦ with respect to all other waves
[7], which is one choice of phase convention that satisfies conservation of energy.

2.4 Spontaneous Parametric Down-conversion

Spontaneous parametric down-conversion is a nonlinear optical process in which a
photon from a pump laser, incident on a nonlinear birefringent crystal, converts into
two single photons under conservation of energy and momentum. Typically, the
down-converted photons are devised to be in orthogonal polarisation or spatially
orthogonal modes.
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2.4.1 Single Mode

Ignoring spectral properties, type-II up-2 or down-conversion can be modeled in the
interaction picture, where the evolution of the state vector is given by [6]

|ψ(t)� = exp(κt(â†
i
â
†
s − âiâs))|ψ(t0)� . (2.58)

This gives the output of a SPDC3, in the number basis, as

|ψout� =
1

cosh(κt)

∞�

n=0

tanh(κt)n|n�i|n�s , (2.59)

where κ is the effective nonlinearity and is a function of the pump power and the
properties of the nonlinear crystal and t is the interaction time. The output state is
correlated in photon number.

2.4.2 Multi Mode

Assuming an undepleted pump which can be treated classically, we can take the
multimode Hamiltonian to be [37]

Ĥ(t) =
�

V

d
3
rχ(2)

E
(+)
p (r, t)Ê(−)

i
(r, t)Ê(−)

s (r, t) + H.c. , (2.60)

where V is the spatial mode volume in the waveguide and Êj(r, t) = Ê
(+)
j

(r, t) +

Ê
(−)
j

(r, t) are the three interacting fields with j = p, i, s denoting the pump, idler
and signal modes respectively.

E
(+)
p (z, t) = Ap

�
dωpα(ωp)ei(kp(ωp)z+ωpt)

, (2.61)

Ê
(−)
j

(z, t) =
�

dωjA(ωj)â†(ωj)e−i(kj(ωj)z+ωjt) (2.62)

are the positive and negative frequency parts of the fields Ep(z, t) and Êj(z, t) re-
spectively, where α(ωp) = exp(−(ωp− µp)2/2σp) is the pump envelope function and
we have restricted the spatial integral to be over only one dimension, i.e. z, and
j = i, s. This Hamiltonian does not commute with itself at different times and
therefore the evolution of the state vector should consider time ordering, giving the

2Upconversion is the reverse process of down-conversion.
3Note that an SPDC state of one spatio-spectral mode is exactly equivalent to a two-mode

squeezed beam.
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output state

|ψ(t)� = Û(t, t0)|ψ(t0)� = T e−
i
�

R t
t0

dt
�
Ĥ(t�)|ψ(t0)� , (2.63)

where T is the time-ordering operator. Recall from Section 2.1.2 that Û(t, t0) can
be expanded into what is known as the Dyson series. We will assume that A(ωj) is
slowly varying over the frequencies of interest and therefore we can bring it outside
of the integral. We can now write

Ĥ(t) = A

�
L/2

−L/2
dz

�
dωidωsdωpe−i∆k(ωi,ωs,ωp)zei∆ωtα(ωp)â†i (ωi)â†s(ωs) + H.c. ,

(2.64)

where L is the length of the crystal, A = χ(2)
ApA(ωi)A(ωs), ∆k = ki(ωi)+ks(ωs)−

kp(ωp) is the phase mismatch and ∆ω = ωi + ωs − ωp. Evaluating the integral over
z yields

Ĥ(t) = AL

�
dωidωsdωpα(ωp)Φ(∆k(ωi, ωs, ωp))ei∆ωt

â
†
i
(ωi)â†s(ωs) + H.c. , (2.65)

where

Φ(∆k(ωi, ωs, ωp)) = sinc
�1

2
∆k(ωi, ωs, ωp)L

�
(2.66)

is the phase-matching function and sinc(x) = sin(x)/x. For a periodically
poled waveguide (see the next section) of periodicity Λ and poling order m,
∆k(ωi, ωs, ωp) = ki(ωi) + ks(ωs) − kp(ωp) + 2π/mΛ [38]. Note that by picking the
spatial integration to be centered around z = 0, it is possible to eliminate a phase
term which would normally be present in equation (2.65). The global phase can
be disregarded if the subsequent measurements are insensitive to such a phase, e.g.
photon-number measurements.

For a pulsed laser, we can assume that the pump field, and therefore the interaction
Hamiltonian, is zero before t0 and after t. Therefore we can extend the limits of the
integration over time to −∞ and ∞ [39] such that

|ψpdc� = T e−
i
�

R∞
−∞ dtĤ(t)|ψ(t0)� . (2.67)
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Performing the time integral inside the exponent yields 2πδ(ωi +ωs−ωp) which then
allows the ωp integral to be evaluated, giving

� ∞

−∞
dtĤ(t) = 2πAL

�
dωidωsα(ωi + ωs)Φ(ωi, ωs)

× â
†
i
(ωi)â†s(ωs) + H.c. .

(2.68)

where Φ(ωi, ωs) = Φ(∆k(ωi, ωs, ωi + ωs)).

Taking the first order term of the Taylor series4 expansion of Û(t, t0)|0� and evalu-
ating the time and pump frequency integrals yields the two-photon state

|ψ� =
� �

dωidωsα(ωi + ωs)Φ(ωi, ωs)â†i (ωi)â†s(ωs)|0� . (2.69)

2.4.3 Quasi Phase Matching

Consider a perfectly phasematched crystal with a nonlinearity χ. In such a crystal,
the down-conversion intensity increases quadratically with the length of the crystal
(solid black in Figure 2.1). If, however, the crystal happens to not be phasematched,
as is typically the case, the three interacting fields propagate through the crystal
at different velocities, and therefore acquire a relative phase shift. This leads to a
down-conversion intensity which oscillates—between zero and some greatly reduced
maximum intensity—along the length of the crystal (red line in Figure 2.1).
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1.5!10"8
Intensity !AU"
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1.!10"7
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4.!10"7

Intensity !AU"

Figure 2.1: Intensity growth as a function of crystal length for a crystal with: critical
phase matching (solid); first order QPM (dot-dashed); second order QPM (dashed); third
order QPM (dotted); and no phase matching (red).

In quasi-phasematching (QPM), the nonlinear medium is inverted whenever the
pump and down-converted fields acquire a phase mismatch ∆k=2πm/Λ—where m is

4Note that to first order, the Taylor and Dyson series are identical.
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an odd integer—allowing phase-matching of a wide range of wavelengths in different
nonlinear materials. In a quasi-phasematched crystal with a poling period Λ [38]
the effective nonlinearity scales with the poling order as χeff = 2χ

πm
, as is shown in

Figure 2.1. For odd m, mth order QPM can be achieved by reversing the sign every
m coherence lengths. Even order QPM can be achieved with the combination of two
odd orders.
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Chapter 3

Teleportation Using Squeezed
Single Photons

Coherent state quantum computing (CSQC) [40, 41] is an optical approach to quan-
tum computing which relies solely on linear optics, state preparation and measure-
ment, rather than in-line optical nonlinearities. Unlike in single-photon linear optical
quantum computing (LOQC) [18, 42]—where qubits are encoded in the polarisation,
path, frequency etc. of single photons—in CSQC, qubits are encoded in the phase
and amplitude of coherent states.

In both coherent-state and linear optical quantum computing, teleportation is used
to implement gates using the concept of gate teleportation [43]. A key practical
difference between the two schemes is that a simple teleportation scheme, with a high
probability of success, exists for CSQC [44, 45], whilst simple LOQC teleportation
only works with a 50% success rate [17]. More generally, in the KLM scheme [18] the
probability of teleportation scales as n/(n + 1), where n is the number of photons
in the entangled state used as a resource and the complexity of the circuit increases
with n. In CSQC the probability increases by simply increasing the amplitude of
the inputs. This leads to a significant saving in the overheads for computation.

Due to the non-orthogonality of coherent state qubits, it was first believed that
an amplitude of α ≥ 2 was required to implement gates for quantum computing
[46]. More recently, however, Lund et al. [41] presented a universal set of gates for
quantum computing which work even for small amplitudes. In this scheme, the size
of the coherent state has no effect on the fidelity of the gate—only on the probability
with which the gate succeeds. Indeed, below a certain amplitude (α ≈ 1.2), these
gates could not be used for scalable quantum computing, as the probability of success
would be too low, nevertheless the probability of success can still be significantly
greater than the LOQC bound of 50%. Such heralded gates open the door to a
range of exciting possibilities for proof-of-principle experimental implementation of
coherent state quantum computing.

In performing these gates, the challenge does not lie in our ability to create large-

23
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amplitude coherent states—these are very well approximated by the output of a laser.
The difficulty arises from our inability to create superpositions of large-amplitude
coherent states. Such coherent state superpositions, introduced in Section 2.3.2 as
cat states, have not yet been experimentally realised.

However, small amplitude cat states (so-called kitten states) can be approximated—
in some cases, very well—using photon-subtracted squeezed vacuum states [47]. Such
states have already been experimentally demonstrated [21, 22].

In this chapter, we present an analysis of squeezed single-photon states as a resource
for teleportation of coherent state qubits and propose proof-of-principle experiments
for the demonstration of coherent-state teleportation and entanglement swapping.
We include an analysis of the squeezed vacuum state as a simpler approximation to
small-amplitude cat states. We also investigate the effects of imperfect sources and
inefficient detection on the proposed experiments. We do not discuss approximations
to kitten states via homodyne post-selection [48].

A photon-subtracted squeezed vacuum state is mathematically equivalent to a
squeezed single-photon state. These terms will be used interchangeably, depend-
ing on context, throughout this chapter.

This chapter is organised as follows. In Section 3.1 we revisit the coherent-state
teleportation protocol introduced in [44, 45]. In Section 3.2 we discuss approxima-
tions to cat states, in particular, the squeezed single-photon state. We then analyse
how well these squeezed single-photon states perform, as resource states for the
teleportation of arbitrary coherent state qubits, in Section 3.3. In Section 3.4, we
propose experimentally realisable demonstrations of coherent-state teleportation us-
ing squeezed single photons. In Section 3.5, we analyse the effect of imperfect state
preparation and inefficient detection on the teleportation scheme before we conclude
and discuss our results in Section 3.6.

3.1 Coherent-state Teleportation

The quantum gates presented by Lund et al. [41] are all variations of the quantum
teleportation scheme [44, 45, 16] shown in Figure 3.1. A general introduction to
quantum teleportation can be found in Section 2.2.5. We will use this teleportation
scheme as the basis for our proof-of-principle experiments. We define the qubit basis
|0� = |α� and |1� = |−α� where

|α� = e
−|α|2/2

∞�

n=0

αn

√
n!
|n� (3.1)

is a coherent state of amplitude α. This basis is only approximately orthogonal where
�α|−α� = e

−2|α|2 , however, for |α| > 2, the overlap is practically zero (< 4× 10−4).
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Figure 3.1: Teleportation scheme for teleporting the state |φ�a = µ|α�a + ν|−α�a. A re-
source state, |res�b = |β�b±|−β�b, incident on a 50 : 50 beamsplitter, creates a coherent-state
Bell pair in modes b and c. After the second beamsplitter, photon-number measurements of
modes a and b project the state in mode c into |φ��c = |φ�a (up to local unitaries). Depend-
ing on the measurement results, the remaining qubit may need to be corrected, as shown
in Table 3.1. For experimental realisation of this scheme, |res�b = Ŝr|1�b and |φ�a = |α�a,
Ŝr� |1�a or Ŝr�� |0�a, where r = ropt(β), r

� = ropt(α), r
�� = ropt-v(α) and β =

√
2α (refer to

Section 3.4). The squiggly line emphasizes entanglement between qubits.

In this chapter, we will use the convention that α refers to the initial amplitude of the
input states in mode a while β refers to the initial amplitude of the resource states
in mode b and β =

√
2α. To teleport an arbitrary coherent-state qubit of amplitude

α, we use an odd cat state of amplitude β as a resource state. The combined input
state can therefore be written as

|ψin�a,b,c = |φ�a|res�b|0�c (3.2)
=

�
µ|α�a + ν|−α�a

��
|β�b − |−β�b

�
|0�c. (3.3)

The first beamsplitter, turns the resource state in mode b into a coherent-state Bell
pair in modes b and c.

|ψbs�a,b,c =
�
µ|α�a + ν|−α�a

��
|α�b|α�c − |−α�b|−α�c

�
. (3.4)

After the second beamsplitter, just before the photon number measurement, the
three-mode state is

|ψ�a,b,c = µ|β�a|0�b|α�c − µ|0�a|β�b|−α�c + ν|0�a|−β�b|α�c − ν|−β�a|0�b|−α�c.
(3.5)

From equation (3.5), it can be seen that photon-number measurements of modes a

and b will project the state in mode c into µ|α�c +ν|−α�c, or some known variation,
which can be corrected with single-qubit Pauli operations (refer to Section 2.2.1), as
shown in Table 3.1. In practice, only the X correction (which is simply implemented
using a phase shifter) needs to be performed for gate applications [34]. Here we
assume corrections are done after detection of the output state. This is called
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m n U

0 odd I

odd 0 X

0 even Z

even 0 XZ

Table 3.1: An example of corrections for the teleportation scheme shown in Figure 3.1,
having used an odd cat state as a resource.

“working in the Pauli frame” [49].

Looking back at equation 3.1, we can see that a coherent state contains a |0� com-
ponent. This can lead to the detection of zero photons in both modes a and b of the
state in equation 3.5, in which case, the teleportation fails. Increasing the ampli-
tude of the coherent state increases the probability of successful teleportation, as the
probability of a |0� component in a coherent state decreases. Figure 3.2 (solid lines)
shows the success probabilities for a selection of input states which range between
two extremities. Notice that in the unique case where |φ�a = |α�a − |−α�a, the
protocol never fails. This is because the odd cat state is a superposition of only odd
photon-number components, and therefore does not contain a |0�, as we will see in
the next section. While the probability of success varies for different input states,
when the gate succeeds, it does so with unity fidelity.
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Figure 3.2: Success probabilities of the teleportation scheme shown in Figure 3.1 using
|res� = |β� − |−β� (solid) and |res� = Ŝr|1� (dashed), as discussed in Section 3.3. The
unnormalised input states are (from top to bottom): |α� − |−α� (red); 1

2 |α� −
√

3
2 |−α�

(blue); |α� or |−α� (green); and |α� + |−α� (yellow). Notice that the success probability is
always larger than that of the LOQC scheme which can not succeed more than half of the
time.
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3.2 Approximating Cat States

While simple and elegant in theory, cat states are notoriously difficult to generate
experimentally. In this section, we discuss experimentally realisable methods for gen-
erating good approximations to cat states. We use the fidelity, F (ρ, |φ�) = �φ|ρ|φ�
(see Section 2.2.2), as a measure of similarity between two states, and therefore a
measure of how well these generated states approximate the desired cat states. The
fidelity ranges between 0, where the states are orthogonal, and 1, where the states
are equal.

Consider even and odd cat states of amplitude β [6]

|even cat� = N+(|β� + |−β�) (3.6)

= N+e
− 1

2 |β|
2
∞�

n=0

2β2n

√
2n!

|2n� , (3.7)

|odd cat� = N−(|β� − |−β�) (3.8)

= N−e
− 1

2 |β|
2
∞�

n=0

2β2n+1

�
(2n + 1)!

|2n + 1�, (3.9)

where N± = 1/

�
2(1± e−2|β|2). By writing the cat states in the Fock basis, we see

that the even and odd cat state contain only even and odd photon-number terms
respectively.

Now consider the squeezed vacuum state

Ŝr|0� =
∞�

n=0

(tanh r)n

√
cosh r

√
2n!

2nn!
|2n�, (3.10)

where r is the squeezing parameter, which also contains only even photon-number
terms. The squeezed vacuum state is a Gaussian state, but nevertheless it is a high-
fidelity (F > 0.99) approximation to the small-amplitude (β < 0.75) even cat state.
Optimising over r, we find that the fidelity between |β� + |−β� and Ŝr|0� is at a

maximum when ropt-v(β) = log
��

2β2 +
�

1 + 4β4
�
. Figure 3.3 (a) shows how this

fidelity and the optimum amount of squeezing r vary as a function of β.

If one photon is subtracted from the squeezed vacuum state, the resulting state—also
known as a squeezed single-photon state—contains only odd photon number terms
and is a high-fidelity (F > 0.99) approximation to the small-amplitude (β < 1.2)
odd cat state [50].

âŜr|0� = Ŝr|1� =
∞�

n=0

(tanh r)n

(cosh r)3/2

�
(2n + 1)!
2nn!

|2n + 1�. (3.11)
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Figure 3.3: (a) The fidelity between an even cat state and a squeezed vacuum state (solid)
and the optimal squeezing parameter, r (dashed), as a function of β. (b) The fidelity between
an odd cat state and a squeezed single photon (solid) and the optimal squeezing parameter, r

(dashed), as a function of β. Note different scales for the fidelity and the optimum squeezing
parameter.

Optimising over r, we find that the fidelity between |β� − |−β� and Ŝr|1� is at a

maximum when ropt(β) = log(
�

2β2

3 + 1
3

�
9 + 4β4).

Figure 3.3 (b) shows how this fidelity and the optimum amount of squeezing r vary
as a function of β. Figure 3.4 shows the Wigner functions (defined in Section 2.1.9)
for odd cat states of amplitudes β = 2 and β = 1, as well as for a squeezed single
photon.

One can continue to subtract more photons, each time creating a better approxi-
mation to either an even or an odd cat state, however this very quickly becomes
extraordinarily challenging to implement experimentally. A theoretical analysis of
this method was performed in references [50, 51].

In this chapter, we focus on the squeezed single photon, as it is a better cat-state
approximation than the squeezed vacuum state, and has already been experimentally
demonstrated [21, 22]. However, we include results for the squeezed vacuum state
for comparison and to see just how well one can do with a Gaussian state. In
the next section, we investigate the eligibility of the squeezed single-photon state
as an approximation to an odd cat state, for the purposes of proof-of-principle
implementation of the quantum teleportation described in [41].

We emphasize that it should not be taken for granted that a high-fidelity approx-
imation to a cat state will necessarily perform well in CSQC protocols. Take the
example of the cat breeding protocol introduced by Lund et al. and Jeong et al.
[47, 52]. Using this scheme, it is possible to create larger cat states by interfering
two smaller cat states on a beam splitter, then performing a measurement on one
of the output modes. When a squeezed vacuum state is used as an approximation
to an even cat state in this protocol, the resultant state is not the expected approx-
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a)

c)

b)

Figure 3.4: The Wigner function, W , where x and p are the in-phase and out-of-phase
quadratures respectively, for a) an odd cat state |β� − |−β� where β = 2, b) an odd cat
state where β = 1 and c) a squeezed single photon Ŝr|1� where r = ropt(1) ≈ 0.31. Notice
that at β = 1, the Wigner functions for the cat state looks very much like for the squeezed
single photon. This becomes more pronounced at even lower β. In the limit of β → 0, the
odd cat state becomes an unsqueezed single photon.

imation to a larger cat state, but rather the same sized squeezed vacuum state that
was input into the scheme. This is in spite of the high fidelity between the squeezed
vacuum and the even cat state at small α.

3.3 Squeezed Single-photon State as a Resource

In this section, we will examine how well coherent-state teleportation can be imple-
mented using a squeezed single photon as a resource. In the previous section, we
showed that the squeezed single photon is a very good approximation to a small-
amplitude odd cat state (and that the squeezed vacuum is also a good approximation
to an even cat state, but at smaller amplitudes). To characterise how well the Ŝr|1�
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Figure 3.5: (a) Fidelities for the teleportation of |φ�a = |α� − |−α� using |res�b = Ŝr|1�
given different photon-number measurement results, (from top to bottom) m = 1, 2, 3, 4
and 5. (b) Fidelities for the teleportation scheme using |res�b = Ŝr|1� and a variety of
unnormalised input states (from top to bottom): |α� − |−α� (red); 1

2 |α� +
√

3
2 |−α� (blue);

|α� + |−α� (yellow); and |α� or |−α� (green). The input state has only a minor effect on
the fidelity.

theoretically performs as a resource for teleportation, we will calculate the fidelity
F (|φ�a, |φ��c) between the input state |φ�a and the output state |φ��c .

Since our resource state is only approximate, we will not have perfect interference at
the beamsplitters. This will have three consequences. The first will be variations in
the output state depending on the number of photons detected. This leads to vari-
ations in the fidelity between the actual and desired output states, as demonstrated
in Figure 3.5(a). By taking into account the different possible output states and
the probability with which we expect them to occur, we can calculate the average
fidelity. One reason for this variation in fidelities, given different photon-number
measurement results, is due to r being optimised to maximise the fidelity between
|res�b = Ŝr|1� and |res�b = |β�− |−β�. This will maximise the average fidelity for the
teleporter, but not the individual fidelities for each different photon-number result.

The second consequence of the imperfect interference will result in different input
states being teleported with different fidelities, as demonstrated in Figure 3.5(b).
This is only a small effect. Notice that in both cases the fidelity drops as a function
of α. This is solely due to the inadequacy of the Ŝr|1� as an approximation to an
odd cat state at high amplitudes, and not an artifact of the gate itself.

The third consequence of the imperfect interference will be an additional way in
which the gate can fail. Not only will it fail if we measure zero photons in both de-
tectors, it will also fail if we measure a non-zero number of photons in both detectors
simultaneously, something which was not possible when we had perfect interference.
This will result in a slightly decreased probability of success, which begins to mani-
fest itself at larger amplitudes whereas the m = n = 0 events are only problematic
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at low amplitudes. This is shown by the dashed curves in Figure 3.2 in Section 3.1.

One might expect that the the squeezed single photon will only be as good a re-
source as it is an approximation to an odd cat state. It is interesting to note that it
is actually better. A squeezed single photon Ŝr|1� will have a certain fidelity when
compared with an odd cat state |β� − |−β�, however, using that resource for tele-
porting |φ�a = |α� − |−α� results in teleportation with a higher fidelity for a given
β. For example, for β = 1, the squeezed single photon has a fidelity of 0.9972 with
an odd cat state, however using it as a resource state, the fidelity of the teleported
state with the ideal state is 0.9984.

In the next section, we will look at teleporting physically realisable input states.

3.4 Proposed Experiments

In the previous section, we demonstrated that a squeezed single photon could be, in
theory, a resource for teleportation of arbitrary superpositions of small-amplitude
coherent states, however, at present, we are unable to create such superpositions.
In this section we propose two types of experiment. The first is the teleportation of
three particular examples states: a squeezed single photon as an approximation to
an odd cat state; a squeezed vacuum as an approximation to an even cat state; and
a coherent state. The second is an entanglement swapping scheme which demon-
strates the effective teleportation of an arbitrary superposition of coherent states.
In our calculations, the photon-number expansion of the states in this section were
truncated at n = 15, which was sufficient for accurate results up to β = 1.2.

3.4.1 Teleportation

We demonstrate coherent-state teleportation by using the resource state |res� =
Ŝr|1� to teleport the following input states: a squeezed single photon Ŝr� |1� as an
approximation to an odd cat state |α� − |−α�; a squeezed vacuum state Ŝr�� |0� as
an approximation to an even cat state |α� + |−α�; and a coherent state |α�.

To teleport a squeezed single photon Ŝr� |1� using another squeezed single photon
Ŝr|1�, we need to match the optimal squeezing parameters r and r

�. This can be
achieved by relating the squeezed single photons to the odd cat states they are
intended to approximate. This gives r = ropt(β) and r

� = ropt(α), where β =
√

2α.
We have calculated the fidelity averaged over only the odd photon-number results.
For even results, a Z correction is required, which would involve sending the output
state through another gate, making a meaningful comparison between the input and
output states of the teleporter difficult. Allowing for the X correction is easy as it
simply corresponds to a π phase shift. All further fidelities shown in this section
have also been averaged over odd photon-number results, for consistency. We also
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Figure 3.6: (a) Fidelities for teleportation using |res�b = Ŝ|1�r and teleporting (solid, from
top to bottom): |φ�a = |α� − |−α�; and |φ�a = |α� + |−α� as well as: (dashed, from top
to bottom) |φ�a = Ŝr� |1�a; |φ�a = |α�a; and |φ�a = Ŝr�� |0�a. (b) Fidelities for teleportation
using |res�b = Ŝr|0�a and teleporting (solid, from top to bottom): |φ�a = |α� + |−α�;
and |φ�a = |α� − |−α� as well as: (dashed, from top to bottom) |φ�a = Ŝr�� |0�a; and
|φ�a = Ŝr� |1�a. Notice different scales for the fidelity.

calculated the fidelity for teleporting |φ�a = |α�a− |−α�a using |res�b = Ŝr|1�b. Both
results are shown in Figure 3.6 (a). For easy comparison with other figures, we have
plotted the fidelity as a function of the effective β for the squeezed single photon,
rather than the squeezing parameter r.

To teleport the squeezed vacuum state, we set r
�� = ropt-v(α). The fidelities for

teleporting Ŝr�� |0� and |α� + |−α� are also shown in Figure 3.6 (a), as is the fidelity
for teleporting |φ� = |α�.
While there is some variation in the fidelity for the different input states, in the
region where β < 1.2, the fidelity is always > 0.99, even when we teleport the
squeezed vacuum state.

Using the squeezed vacuum state as a resource for teleportation, however, does not
do as well. This is because the resource state needs to be higher in amplitude than
the input state and the squeezed vacuum is not as good an approximation to an
even cat state at higher amplitudes. To achieve fidelities > 0.99, we can only use
β < 0.5. These results are shown in Figure 3.6 (b). It is interesting to note that
when using the squeezed vacuum state as a resource, the fidelities for teleportation
do not follow the general trends of the fidelity between the ideal and approximate
resource, as is the case with using the squeezed single photon as a resource.

3.4.2 Entanglement Swapping

To truly demonstrate a teleportation protocol, one would like to demonstrate that
the protocol is capable of teleporting an unknown arbitrary coherent-state qubit.
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Figure 3.7: (a) By measuring mode a of a Bell state in an arbitrary basis, an arbitrary
state can be prepared in mode b. This arbitrary state can be subsequently sent through a
teleporter, T . (b) Replacing the teleporter T with the teleporter described in Figure 3.1 and
delaying the measurement of mode a, until after the teleportation, results in an entanglement
swapping scheme analogous to (a), where the Bell state is created by sending the state |φ�a
through a beam splitter and the teleporter consists of the circuit inside the dotted region.
By teleporting one qubit in the Bell state before measuring the other qubit in that Bell state,
we are effectively teleporting all possible states. The homodyne measurements on modes
a and d can be performed at the end in the form of state tomography. The squiggly lines
represent entanglement between qubits.

This is made possible by casting the teleportation of an arbitrary unknown state
into an entanglement swapping scheme. Refer to the caption in Figure 3.7 for details.

To characterise how well this protocol works, we calculate the fidelity between the
two-qubit entangled state in modes a and b, after the first beamsplitter, and the
two-qubit entangled state in modes a and d, after the photon number measurements
of modes b and c. In our calculations, as with the teleportation scheme, we have
omitted the even photon-number results. The average fidelity, over the odd photon-
number results, is shown in Figure 3.8. At first glance, it looks like the entanglement
swapping protocol does not work as well as the teleportation scheme. This is because,
in the teleportation scheme, for a given resource state of amplitude β, the input state
to be teleported would have an amplitude α and the cat state approximations are
much better at lower amplitudes. For the entanglement swapping scheme, we begin
with two states of amplitude β, which means we are already starting with lower
fidelity approximations. Nevertheless, for β < 1.2, the fidelity is always > 0.99.

The state |ψ�ab will be maximally entangled in the case where |φ�a is either an
odd cat state or a squeezed-single-photon state. The maximum fidelity between a
maximally entangled bipartite state and an arbitrary separable bipartite state is
F = 0.5. Therefore, given a fidelity above 0.5, we can infer that the entanglement
swapping scheme has preserved some amount of entanglement.

Using a squeezed vacuum state to approximate an even cat state does not perform
as well. To achieve fidelities of > 0.99, we could only use β < 0.45.
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Figure 3.8: Fidelity for an entanglement swapping protocol using: (a) |φ� = Ŝr� |1�; and
(b) |φ� = Ŝr�� |0�. Notice different scales for the fidelity.

3.5 Error Analysis

Until now, we have been treating the proposed experiments as lossless systems,
however, propagation loss, imperfect detectors and loss in the source are likely to
be issues in an experiment. In this section, we investigate the effects of loss in the
proposed experiment.

Errors could occur in a number of places: the state to be teleported and the resource
state could be made imperfectly; there could be photon loss at the optical elements;
and of course, inefficient photon number and homodyne detection. In this chapter,
we assume that imperfect creation of the state to be teleported and any inefficiencies
in the homodyne detection of the output state reflect our inability to analyse how well
the scheme worked and are not fundamental to the scheme itself. These errors can
be compensated for in the post measurement analysis of the data. The calculations
in this section were further complicated by additional loss modes, therefore, it was
necessary to limit the size of β. The photon-number expansion of the states in this
section were truncated at n = 6 for the teleportation scheme and n = 5 for the
entanglement swapping scheme which gave accurate results up to β = 1 and β = 0.5
respectively.

3.5.1 Teleportation

We model the imperfect creation of the resource state by placing a beamsplitter of
transmitivity η1 just after the source and the inefficient photo-detection by placing
beamsplitters of transmitivity η2 just before the detectors, as is shown in Figure
3.9. We assume that both detectors will have the same inefficiencies. ηi ranges from
0 to 1 and at ηi = 1, we have a lossless system. Our loss calculations have been
carried out for the same scenario as in Section 3.4, however, the loss in mode b will
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Figure 3.9: Teleportation scheme (a) and entanglement swapping scheme (b) with addi-
tional beamsplitters of transmitivity: η1 to model the imperfect creation of the resourse state
|res�b = Ŝr|1�b and; η2 to model the inefficiencies in the photo-detectors. The input state is
|φ�a = Ŝr� |1�a where r

� = ropt(
√

η1α) for the teleportation scheme and r
� = ropt(

√
η1β) for

the entanglement swapping scheme to match the amplitude of the lossy resource state.

decrease the amplitude of the resource state |res�b = Ŝr|1�b by √η1. To match this,
our states to be teleported will need to be |φ�a = |√η1α�a, Ŝr� |1�a and Ŝr�� |0�a where
r
� = ropt(

√
η1α) and r

�� = ropt-v(
√

η1α). Figure 3.10 shows the fidelity as a function
of η1 and η2 using |res�b = Ŝr|1�b and teleporting |φ�a = Ŝr� |1�a (a) and |√η1α�a (b)
for β = 0.5 (solid) and β = 1.0 (dashed). As expected, loss has less effect on the
fidelity at lower β, unfortunately, for |φ�a = Ŝr� |1�a, decreasing β does not improve
the fidelity in the high-fidelity regime where one would like to perform experiments.
Teleporting |φ�a = |√η1α�a is largely unaffected by loss. At both amplitudes, the
fidelity remains extremely high.
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Figure 3.10: Contour plots of the fidelity for the teleportation scheme as a function of η1

and η2 for β = 0.5 (solid) and β = 1.0 (dashed): (a) |res� = Ŝr|1� and |φ� = Ŝr� |1�; (b)
|res� = Ŝr|1� and |φ� = |√η1α�.
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To compare these fidelities with those for other states, we have taken a slice through
the contour plots at η1 = η2 and plotted the fidelity as a function of the equal
losses. This is shown in Figure 3.11. We have calculated the fidelity for teleporting
a selection of ideal input states using both an ideal odd cat state and the squeezed
single photon approximation as resources. Where possible, we have also teleported
approximations to the ideal input states. This was done for β = 0.5 and β = 1.0.
This gives an idea of how much of the effect of loss is inherent to the scheme and
how much is a result of the approximate input and resource states. At β = 0.5, it is
difficult to distinguish between the results for any of these variations between ideal
and approximate input and resource states. At this amplitude, the effects of loss are
fundamental to the scheme itself. It is interesting to note that for |φ�a = Ŝr� |1�a (or
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Figure 3.11: The fidelity for the teleportation scheme as a function of η1 and η2 where
η1 = η2 for β = 0.5 (solid) and β = 1.0 (dashed). (a) |res� = |β�− |−β� and |φ� = |α�− |−α�
(red), |res� = Ŝr|1� and |φ� = |α� − |−α� (blue) and |res� = Ŝr|1� and |φ� = Ŝr� |1� (green).
The fidelities for these states are so similar, they are practically indistinguishable. (b) From
top to bottom, |res� = |β� − |−β� and |φ� = 1

2 |α�−
√

3
2 |−α� (red) and |res� = Ŝr|1� and

|φ� = 1
2 |α�−

√
3

2 |−α� (blue). For α = 0.5, the fidelities are also practically indistinguishable.
(c) From top to bottom, |res� = Ŝr|1� and |φ� = Ŝr|0� (green), |res� = Ŝr|1� and |φ� =
|α� + |−α� (blue) and |res� = |β� − |−β� and |φ� = |α� + |−α� (red). Again, practically
indistinguishable at α = 0.5. (d) From top to bottom, |res� = |β� − |−β� and |φ� = |α�
(red) and |res� = Ŝr|1� and |φ� = |α� (blue). Notice different scales for the fidelity.



§3.5 Error Analysis 37

|φ�a = |α�a − |−α�a), in the limit of η1 → 0, the input state amplitude is matched
such that α → 0, in which case, the input state becomes |φ�a → |1�a and the output
state will be |φ��c = |0�c resulting in a fidelity which goes to 0. However, for any
other input state, as η1 → 0, the input state will tend to |φ�a → |0�a. The output
state will still be |φ��c = |0�c resulting in a fidelity which goes to 1. This is why the
loss seems to have a greater effect on the fidelity for teleporting |φ�a = Ŝr� |1�a and
|φ�a = |α�a − |−α�a than any other state.

Increasing the amplitude to β = 1.0 does not have much effect on teleporting the
odd cat state (and its approximations), but it does decrease the fidelity for the other
states. In attempting high-fidelity experiments, low loss levels will be essential when
teleporting states similar to |φ�a = Ŝr� |1�a and |φ�a = |α�a− |−α�a. States closer to
|φ�a = |α�a + |−α�a, |φ�a = |α�a and their approximations are more forgiving.

3.5.2 Entanglement Swapping

In the entanglement swapping protocol, we treat modes a and b as the input state
to the teleporter and ignore loss in these modes in the analysis of the effects of loss
on the teleporter, which has been modeled in much the same way as in Section 3.5.1
(see Figure 3.9 (b)). We were only able to compute reliable fidelities for β = 0.5 as
higher values of β would require higher truncation of the photon number which, for
a 7-mode calculation, was not computationally tractable. These fidelities are shown
in Figure 3.12.

At this amplitude, we can see that there is not much difference between performing
the entanglement swapping with an ideal odd cat state or the squeezed single photon.
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Figure 3.12: Contour plots of the fidelity for the entanglement swapping scheme as a
function of η1 and η2 for β = 0.5 where: (a) |φ� = |α� − |−α� (dashed) and |φ� = Ŝr� |1�
(solid); and (b) |φ� = |α� + |−α� (dashed) and |φ� = Ŝr� |0� (solid).
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Both are quite severely affected by loss. The ideal even cat is much more tolerant
to loss whereas the squeezed vacuum is less so, however still better than the odd cat
and squeezed single photon.

3.6 Discussion

The squeezed single photon turns out to be a great resource for high-fidelity tele-
portation of small-amplitude coherent state superpositions. Due to its property of
always containing at least one photon, the teleportation scheme will always succeed
with a probability greater than 50%. We have shown that the squeezed single photon
can be used to teleport a coherent state, a squeezed single photon and a squeezed
vacuum, which despite not being a very good resource for teleportation itself, is
a good approximation to an even cat state at very small amplitudes. In-principle
teleportation of arbitrary coherent state superpositions can be demonstrated using
squeezed single photons as inputs to an entanglement swapping protocol. This also
works with high fidelity at small amplitudes. Teleportation is the implementation of
the identity gate and these results suggest that demonstration of more complicated
non-trivial gates will be practical in the foreseeable future.

Our analysis of the effects of imperfect source preparation and inefficient detection
has shown this setup to be very fragile in this regard. It would be possible to do
high-fidelity teleportation of states like the coherent state and the even cat state
with a lossy system, but states which are more similar to the odd cat state degrade
very quickly, even with low loss. It looks like this fragility is a property of the gate,
and not just the approximation of the states, however, at higher amplitudes, the
fidelity is further affected by loss when using the approximate states.

In this chapter we have analysed coherent-state teleportation using small-amplitude
approximations to cat states, however, there has been progress in creating larger
amplitude cat state approximations via cat state amplification [47, 52] and ancilla-
assisted photon-subtraction [53].



Chapter 4

Optimised Generation of
Heralded Fock States Using
Spontaneous Parametric
Down-conversion

The generation of heralded pure Fock states via spontaneous parametric down-
conversion (SPDC) relies on perfect photon-number correlations in the output
modes. Correlations in any other degree of freedom, however, degrade the purity of
the heralded state. In this chapter, we investigate spectral entanglement between
the two output modes of a periodically poled waveguide. With the intent of gen-
erating heralded 1- and 2-photon Fock states, we expand the down-converted state
to second order in photon number. We explore the effects of spectral filtering and
inefficient detection, of the heralding mode, on the count rate, g

(2) and purity of the
heralded state, as well as the fidelity between the resulting state and an ideal Fock
state.

This chapter is structured as follows. In Section 4.2, we introduce spectral notation
for photon states as well as a theoretical model of spectral effects in SPDC. In
Section 4.3 we introduce spectral filtering. In Section 4.4 we present analytical
results for the probability of detecting a single photon in the heralding detector, the
heralded output state, its g

(2) and purity, as well as the maximum fidelity between
the heralded output state and an ideal pure state. In Section 4.5, we present similar
results for the generation of two-photon Fock states. In sections 4.6 and 4.7, we
illustrate these results using realistic parameters. In Section 4.8 we discuss our
results.

Finally, a note on nomenclature. In our theoretical calculations, we have a preference
for using frequency (as opposed to wavelength) due to its direct relationship to energy
conservation in SPDC, however, we have made an attempt to also present our results
in nanometers (nm), for readers who are accustomed to “thinking in wavelengths”.

39



40 Optimised Generation of Heralded Fock States Using SPDC

All frequencies quoted in this chapter are angular frequencies in units of s−1. When
describing Gaussian filters and beam profiles, we will specify the central frequency
and Gaussian standard deviation in s−1 as well as the central wavelength and the
FWHM1 in nm.

4.1 Single-photon Sources

Pure photon Fock states, in particular, single-photon states, are useful for many
quantum-optical applications, including quantum information, quantum computing
and quantum cryptography [54, 42]. Some novel uses for photon-number states
include the generation of other non-Gaussian states, such as Schrödinger kitten states
[21, 48], as described in Chapter 3. A common method for creating single-photon
states makes use of spontaneous parametric down-conversion (refer to section 2.4).
The detection of a single photon in one spatial mode (idler) heralds the presence
of another single photon in the other spatial mode (signal). In practice, however,
given high enough pump power, the presence of higher order photon-number terms
in the output state can lead to a photon-number mixed state in the signal mode,
when inefficient detectors mistake two (or more) photons for one.

Energy conservation ensures that the frequencies of the down-converted photons al-
ways sum to the pump frequency. For CW pumped down-conversion, these correla-
tions cannot be avoided, but pulsed pump light allows this constraint to be weakened.
Strong spectral correlations are another potential source of mixedness—the signal
state is projected into a spectrally mixed state when a frequency-insensitive detec-
tor heralds a single photon in the signal mode. In the context of single-mode versus
multi-mode descriptions [55, 35] this property can also be interpreted as projecting
the single photon onto different distinguishable broadband spectral modes [28]. In
recent years, there has been a growing effort in engineering pulsed SPDC sources to
produce photons uncorrelated in frequency, i.e. those with a separable joint spectral
amplitude (JSA). Some examples include manipulating the crystal length, material,
bandwidth and central frequency [23, 24, 25, 26, 27, 28, 29, 30, 31, 32] as well as
filtering the pump field, prior to down-conversion, using an optical cavity [56]. An-
other promising technique produces a source of counter-propagating photons with a
separable JSA [57].

In the rest of this chapter, we investigate spectral entanglement between the two out-
put modes of a periodically poled waveguide, with the intent of generating heralded
1- and 2-photon Fock states.

1Full width at half maximum.
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4.2 Spontaneous Parametric Down Conversion

Consider the output state of a spontaneous parametric down-conversion process, as
introduced in Section 2.4.2.

|ψpdc� = T e−
i
�

R∞
−∞ dtĤ(t)|ψ(t0)� , (4.1)

where T is the time-ordering operator and Ĥ(t) is defined in equation 2.65. Û(t0, t)
can be expanded into what is known as the Dyson series. In Chapter 6, we show
that the Taylor and Dyson series expansions of equation 6.1 produce the same results
to second order, and therefore, we can safely expand Û(t0, t) as a Taylor series. A
description of multiple pair creation in degenerate SPDC has also been analysed in
the Heisenberg picture by Wasilewki et al. [58] and Mauerer [59].

Following Grice and Walmsley [37], we Taylor expand the phase mismatch to
first order such that ∆k ≈ ∆k

(0) + k
�
sνs + k

�
i
νi − k

�
pνp where νj = ωj − µj ,

k
�
j

= ∂kj(ω)/∂ω|ω=µj and µj is the center frequency of a photon in mode j. We
set µi = µs = µ and µp = 2µ. We can achieve perfect phase-matching by picking
the poling periodicity Λ such that ∆k

(0) = ks(µs) + ki(µi) − kp(µp) = 2π/Λ and
therefore ∆k ≈ k

�
sνs + k

�
i
νi − k

�
pνp.

To consider contributions from the 2-photon components of the down-converted
state, we take the Taylor series expansion of the unitary evolution operator in equa-
tion (6.1) to second order (disregarding the time-ordering operator):

Û(t0, t) ≈ 1 +
1
i�

� ∞

−∞
dt1Ĥ(t1) +

1
2(i�)2

� ∞

−∞
dt2Ĥ(t2)

� ∞

−∞
dt3Ĥ(t3) . (4.2)

This gives the truncated down-converted state

|ψpdc� = N

��
1 + χ2

�
|0� + χ

� �
dωidωsf(ωi, ωs)â†i (ωi)â†s(ωs)|0�

+
χ2

2

� �
dωidωsf(ωi, ωs)â†i (ωi)â†s(ωs)

×
� �

dω�idω�sf(ω�i, ω
�
s)â

†
i
(ω�i)â

†
s(ω

�
s)|0�

�
,

(4.3)

where χ = 2πAL/i� and N is defined in equation (4.7). The joint spectral amplitude
(JSA) is given by

f(ωi, ωs) = Nfα(ωi + ωs)Φ(ωi, ωs) , (4.4)

where α(ωi +ωs) is the pump envelope function and Φ(ωi, ωs) is the phase matching
function (PMF), as defined in section 2.4.2, and the normalisation parameter Nf is
chosen such that

�
dωidωs|f(ωi, ωs)|2 = 1.
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Any well-behaved complex function can always be decomposed in terms of a dis-
crete basis of orthonormal functions (a well known example is the basis of Hermite
functions). This is known as the Schmidt decomposition.

f(ωs, ωi) =
�

k

bkξk(ωs)ζk(ωi) , (4.5)

where the Schmidt modes ξk(ωs) and ζk(ωi) are normalised and may be complex
and the Schmidt coefficients bk are real and

�
k
|bk|2 = 1, if f(ωs, ωi) is normalised.

It is useful to write the down-converted state in terms of the Schmidt decomposition
(refer to Table 4.1 for creation operator definitions).

|ψpdc� = N

��
1 + χ2

�
|0� + χ

�

k

bkÂ
†
sξk

Â
†
iζk
|0�

+
χ2

2

�

k,k�

bkbk�Â
†
sξk

Â
†
sξk�

Â
†
iζk

Â
†
iζk�

|0�
�

,

(4.6)

where ξk(ωi) are the Schmidt modes for the idler state and ζk(ωs) are the Schmidt
modes for the signal state and

N =
���1 + χ2

��2 + |χ|2 + |χ|4
� �

k,k
�

k<k
�

��bkbk�
��2 +

�

k

��bk

��4
��−1/2

. (4.7)

Notice, in the four-photon term of equation (4.6), when two photons are created in
the same spectral mode (i.e. k = k

�) there will be a factor of
√

2 in front of each
two-photon Fock state, increasing the probability of down-conversion into such a
state. This can be understood due to stimulation effects in the PDC process itself.
To take account of this, equation (4.6) can also be written as

|ψpdc� = N

��
1 + χ2

�
|0� + χ

�

k

bk|1; ξk�s|1; ζk�i

+ χ2
� �

k

b
2
k
|2; ξk�s|2; ζk�i +

�

k,k
�

k<k
�

bkbk� |1; ξk�s|1; ξk��s|1; ζk�i|1; ζk��i
��

.

(4.8)

We can characterise the spectral entanglement of the JSA by using the entropy of
entanglement [60]. The entropy of entanglement can be defined, for the bi-partite
state

|Ψ� =
�

k

bk|1; ξk�|1; ζk� , (4.9)
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Creation Spectral State Description
Operator Mode

Â
†
iζk

ζk(ωi) |1; ζk�i initial idler Schmidt modes

Â
†
sξk

ξk(ωs) |1; ξk�s initial signal Schmidt modes
Ĉ
†
T ζk

T (ωi)ζk(ωi) |1;T ζk�i filtered idler modes
D̂

†
Rζk

R(ωi)ζk(ωi) |1;Rζk�i reflected filtered idler modes
Ĉ
†
φj

φj(ωi) |1;φj�i orthog. filtered idler modes
D̂

†
ϕj ϕj(ωi) |1;ϕj�i orthog. reflected filtered idler modes

Â
†
iτk

τm(ωs) |1; τm�s diag. single-photon signal modes

Table 4.1: Summary of multi-mode creation operators, spectral modes and states, some of
which will be introduced in subsequent sections.

in terms of the Schmidt values:

E(|Ψ�) = −
�

k

b
2
k
log2(b

2
k
) . (4.10)

The entropy of entanglement is valid only for pure bipartite states and, when defined
in terms of the Schmidt decomposition, can not be applied to the entire output state
in equation (4.8). However, we can apply it to the two-photon term to get some
information about the spectral entanglement arising only from the JSA. The entropy
of entanglement ranges from zero for a product state to log2 N for a maximally
entangled state of two N -state particles, which in our case corresponds to a state
containing N orthogonal spectral modes. In the limit of a maximally entangled JSA,
the entropy of entanglement would approach infinity.

4.3 Spectral Filtering

A spectral filter can be modeled as a frequency dependent beam-splitter:

â
†(ω) → T̃ (ω)ĉ†(ω) + R̃(ω)d̂†(ω) , (4.11)

where |T̃ (ω)|2 and |R̃(ω)|2 are the transmitted and reflected probabilities and
|T̃ (ω)|2 + |R̃(ω)|2 = 1. In addition to the filter, we consider an inefficient detec-
tor which we model by a beam splitter of reflectivity 1 − η, followed by a perfect
detector (refer to Figure 4.1 in Section 4.4). If the reflected mode of the filter and
the reflected mode of the beamsplitter are to be traced out, the filter-beamsplitter
combination can be modeled by a filter with the following transformation:

â
†(ω) → T (ω)ĉ†(ω) + R(ω)d̂†(ω) , (4.12)
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where T (ω) = T̃ (ω)√η and R(ω) =
�

1− |T̃ (ω)|2η. In terms of the mode functions
ζk, this can be written as

Â
†
ζk
→ Tζk

Ĉ
†
T ζk

+ Rζk
D̂

†
Rζk

(4.13)

where we have defined

Tζk
=

��
dω|T (ω)ζk(ω)|2 , (4.14)

Rζk
=

��
dω|R(ω)ζk(ω)|2 , (4.15)

Ĉ
†
T ζk

=
1

Tζk

�
dωT (ω)ζk(ω)ĉ†(ω) , (4.16)

D̂
†
Rζk

=
1

Rζk

�
dωR(ω)ζk(ω)d̂†(ω) . (4.17)

The definitions in equations (4.14)-(4.17) ensure that the creation operators for the
filtered modes satisfy the commutation relations [ĈT ζk

, Ĉ
†
T ζk

] = 1 and [D̂Rζk
, D̂

†
Rζk

] =
1. However, the filtered functions T ζk(ωs) no longer define proper modes because the
functions ζk(ωs)T (ωs) are, in general, not orthogonal to the functions ζk�(ωs)T (ωs)
for k �= k

� and therefore need to be orthogonalised (eg. using the Gram-Schmidt
procedure) such that

Tζk
Ĉ
†
T ζk

|0� =
�

j

ukjĈ
†
φj
|0� , (4.18)

Rζk
D̂

†
T ζk

|0� =
�

j

vkjD̂
†
ϕj
|0� , (4.19)

where φj(ωi) are now the new modes defining the idler state and ϕj(ωi) are the
reflected modes that will be traced out, and

ukj =
�

dωφj(ω)∗ζk(ω)T (ω) = Tζk
�1;φj |1;T ζk� , (4.20)

vkj =
�

dωϕj(ω)∗ζk(ω)R(ω) = Rζk
�1;ϕj |1;Rζk� . (4.21)

The filter relationship in equation (4.13) can also be written as follows:

Â
†
ζk
→

�

j

�
ukjĈ

†
φj

+ vkjD̂
†
ϕj

�
. (4.22)

Because the filter has been modeled as a frequency dependent beamsplitter, it will
have similar properties to a beamsplitter. One such property is the possibility to
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allow one photon, from an incident two-photon state, to pass through the filter while
rejecting the other. Detection of a filtered two-photon state may then result in, even,
a perfect detector mistaking it for a one-photon state.

4.4 Generating Single-photon Fock States

Detection of a single photon in the idler mode heralds the presence of a single photon
in the signal mode. In this section, we consider a hypothetical perfect detector, an
inefficient detector and a Gaussian spectral filter placed in front of the lossy detector.
We model the generation of two-photon Fock states in section 4.5.

4.4.1 Case 1: Perfect Detection in the Triggering Idler Mode

The projector for a detector that perfectly distinguishes photon number, but gains
no information about the frequency of the photon can be written as follows:

Π1 =
�

dωâ
†(ω)|0��0|â(ω) =

�

j

|1; ζj��1; ζj | . (4.23)

We can interpret this as: the detection of a single photon â
†(ω)|0�, however due

to the lack of spectral knowledge, ω must be integrated over; or alternatively, the
detection of a single photon in the spectral mode |1; ζj�, however due to the lack of
knowledge about which mode it was in, it is necessary to sum over j. Since photon
detection is destructive, the detected mode must be traced out. The probability of
detecting a single photon in the idler mode using a perfect single-photon detector
(refer to Figure 4.1(a)), is

p1 = �Ψpdc|Π1|Ψpdc� = |N |2|χ|2 . (4.24)

Given a single-photon detection in the idler mode, the heralded signal state is

ρ1 =
1
p1

Tri

�
Π1|Ψpdc��Ψpdc|

�
=

�

k

|bk|2|1; ξk�s�1; ξk| . (4.25)

The g
(2), defined in equation 2.25, is effectively a measure of the joint photocount

probability of detecting the arrival of two photons at a particular time. Given the
definition of the probability in equation 4.23, the multimode normalised second order
correlation function can be defined as

g
(2) =

�
j,j��Â

†
ξj

Â
†
ξj
�Âξj Âξj

��
� �

j
�Â†

ξj
Âξj �

�2 . (4.26)
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=

Figure 4.1: Schematic diagrams of SPDC setup for: (a) perfect detection in the triggering
mode (see sections 4.4.1 and 4.5.1); (b) inefficient detection in the triggering mode (see
sections 4.4.2 and 4.5.2); and (c)(i) filtering the triggering mode prior to detection with
inefficient detector and (ii) the equivalent setup where the filter and beamsplitter have been
combined into one filter (see sections 4.4.3 and 4.5.3).

The g
(2) of the signal state is g

(2)
1 = 0. This reveals that there is only one photon in

the signal mode, but not how pure it is. The purity of the heralded state is

P1 = Tr[ρ2
1] = |N1|4

�

k

|bk|4 . (4.27)

For a state which only contains single photons, i.e. one that is heralded by a perfect
detector, the purity is equivalent to the Hong-Ou-Mandel visibility [61].

Without loss of generality, we order the Schmidt coefficients in decreasing order
from k = 0. Therefore, the pure single photon state with the highest overlap with
the projected state will be the photon mode corresponding to the highest Schmidt
coefficent, b0, and hence the maximum fidelity with a single photon Fock state is

F1 = max
j

F (ρ1, |1; ξj�) = �1; ξ0|ρ1|1; ξ0� = |b0|2 . (4.28)
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The fidelity does not depend on χ. Increasing the strength of the nonlinearity only
has an effect on how often the detector registers a click, however, once that happens,
the signal mode is always projected into the same state.

4.4.2 Case 2: Inefficient Detection in the Triggering Idler Mode

An inefficient detector can be modeled by the transformation in equation (4.12)
where T (ω) = √

η and R(ω) =
√

1− η, i.e. a beamsplitter, followed by a perfect
detector (refer to Figure 4.1(b)). After the beam splitter, the joint signal-idler state
is

ρineff = Tr
D̂

[|Ψineff��Ψineff |] , (4.29)

where

|Ψineff� = N

��
1 + χ2

�
|0� + χ

�

k

bk

�√
ηÂ

†
sξk

Ĉ
†
ζk

+
�

1− ηÂ
†
sξk

D̂
†
ζk

�
|0�

+
χ2

2

� �

k,k�

bkbk�Â
†
sξk

Â
†
sξk�

�
ηĈ

†
ζk

Ĉ
†
ζk�

+ (1− η)D̂†
ζk

D̂
†
ζk�

+
√

η
�

1− η(Ĉ†
ζk�

D̂
†
ζk

+ Ĉ
†
ζk

D̂
†
ζk�

)
�
|0�

��
.

(4.30)

See table 4.1 for creation operator definitions. The probability of detecting a single
photon in the idler mode, using an inefficient single-photon detector, is

p1,ineff = Tr[Π1ρineff ] (4.31)

= |N |2|χ|2η
�

1 + 2|χ|2(1− η)
� �

k,k
�

k<k
�

|bkbk� |2 +
�

k

|bk|4
��

. (4.32)

Given a single-photon detection in the idler mode, the heralded signal state is

ρ1,ineff =
1

p1,ineff
Tr

Ĉ

�
Π1ρineff

�
(4.33)

= |N1,ineff |2
��

k

|bk|2|1; ξk�s�1; ξk|

+ 2|χ|2(1− η)
� �

k

|bk|4|2; ξk�s�2; ξk|

+
�

k,k
�

k<k
�

|bkbk� |2|1; ξk�s|1; ξk��s�1; ξk|s�1; ξk� |
��

,

(4.34)

where N1,ineff = Nχ
√

η/
√

p1,ineff .
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The g
(2) for this state, defined in equation (4.26), is

g
(2)
1,ineff =

γ1,ineff

|N1,ineff |2(1 + γ1,ineff)2
, (4.35)

where

γ1,ineff = 4|χ|2(1− η)
� �

k,k
�

k<k
�

|bkbk� |2 +
�

k�

|bk|4
�

. (4.36)

The purity of the signal state is

P1,ineff = Tr[ρ2
1,ineff ] (4.37)

= |N1,ineff |4
��

k

|bk|4 + 4|χ|4(1− η)2
� �

k,k
�

k<k
�

|bkbk� |4 +
�

k

|bk|8
��

. (4.38)

The maximum fidelity, between the heralded state and a pure Fock state |1; ξj�, is

F1,ineff = max
j

F (|1; ξj�, ρ1,ineff) = �1; ξ0|ρ1,ineff |1; ξ0� = |N1,ineff |2|b0|2 (4.39)

The fidelity is now a function of both the detector efficiency η and the nonlinearity
strength χ.

4.4.3 Case 3: Filtering the Idler State

We now introduce a filter in the idler mode as shown in Figure 4.1(c). Applying a
filter, as defined in equation (4.13), to the signal mode, gives the filtered state

ρfilt = Tr
D̂

[|Ψfilt��Ψfilt|] , (4.40)

where

|Ψfilt� = N

��
1 + χ2

�
|0� + χ

�

k,j

bkÂ
†
sξk

�
ukjĈ

†
φj

+ vkjD̂
†
ϕj

�
|0�

+
χ2

2

�

k,k�,j,j�

bkbk�Â
†
sξk

Â
†
sξk�

�
ukjuk�j�Ĉ

†
φj

Ĉ
†
φj�

+ vkjuk�j�D̂
†
ϕj

Ĉ
†
φj�

+ ukjvk�j�Ĉ
†
φj

D̂
†
ϕj�

+ vkjvk�j�D̂
†
ϕj

D̂
†
ϕj�

�
|0�

�
,

(4.41)

and ukj and vkj are defined as per equations (4.20) and (4.21).
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The probability of detecting a single photon in the filtered idler mode is

p1,filt = Tr[Π1ρfilt] (4.42)

= |N |2|χ|2
��

k

|bk|2T 2
ζk

+ |χ|2
��

k

2|bk|4T 2
ζk

R
2
ζk

+
�

k,k
�

k<k
�

|bkbk� |2
�
T

2
ζk

R
2
ζk�

+ T
2
ζk�

R
2
ζk

+ Tkk�Rk�k + Tk�kRkk�

��
,

(4.43)

where

Tkk� = Tζk
T
∗
ζk�
�1;T ζk� |1;T ζk� =

�

j

ukju
∗
k�j , (4.44)

Rkk� = Rζk
R
∗
ζk�
�1;Rζk� |1;Rζk� =

�

j

vkjv
∗
k�j . (4.45)

Given a single-photon detection in the idler mode, the heralded signal state is

ρ1,filt =
1

p1,filt
TrC

�
Π1ρfilt

�
(4.46)

= |N1,filt|2
��

k,k̃

bkb
∗
k̃
T

kk̃
|1; ξk�i�1; ξ

k̃
|
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kk̃�Rk�k̃Â

†
iξk

Â
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|0��0|Âiξ
k̃
Âiξ

k̃�

�
,

(4.47)

where N1,filt = Nχ/
√

p1,filt. Note that filtering the idler mode also changes the mode
structure of the heralded signal state. The g

(2) for this state, defined in equation
(4.26), is

g
(2)
1,filt =

γ1,filt

|N1,filt|2(
�

k
|bk|2|Tζk

|2 + γ1,filt)2
, (4.48)

where

γ1,filt = 2|χ|2
�

2
�
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|bk|4RkkTkk

+
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k,k
�

k<k
�

|bkbk� |2(RkkTk�k� + Rk�kTkk� + Rkk�Tk�k + Rk�k�Tkk)
�

.
(4.49)
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The purity of the heralded state is

P1,filt = Tr[ρ2
1,filt] (4.50)

= |N1,filt|4
��
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.

(4.51)

The density matrix in equation (4.47) is not diagonal in the |1; ξk� basis, but this
can be easily achieved, for the part of the state which is relevant for calculating the
fidelity with a single-photon Fock state, giving

ρ1,filt,part = |N1,filt|2
�

k,k̃

bkb
∗
k̃
T

kk̃
|1; ξk��1; ξ

k̃
| =

�

m

dm|1; τm��1; τm| , (4.52)

where

|1; τm� =
�

k

cmk|1; ξk� . (4.53)

and τm(ωs) are the new orthogonal modes defining the signal state. The maximum
fidelity, between the heralded state and a pure single-photon state |1; τl�, is

F1,filt = max
l

F (|1; τl�, ρ1,filt) = max
l

�1; τl|ρ1,filt,part|1; τl� = max
m

dm . (4.54)

The spectral distribution τm should be chosen in any interferometric experiment to
optimise for the best performance of the heralded single photons.

In the extreme case where T̃ (ω) = δ(ω−µ), i.e. the filter picks out a single frequency
µ, the fidelity tends to unity and the signal state tends to the pure state

|Ψ1,filt,δ� = N1,filt

�

k

bkζk(µ)|1; ξk� =
�

dm|1; τm� , (4.55)

as χ → 0. This implies that it is possible to obtain arbitrarily pure single photon
states, with the use of strong spectral filtering and by ensuring the nonlinearity
strength is low, to minimise the photon-number mixedness which results from strong
filtering. This is the technique that has been used in most experiments.
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4.5 Generating 2-photon Fock States

In addition to creating single-photon states, it is becoming increasingly desirable to
create higher photon-number Fock states, e.g. in the generation of Schrödinger cat
states [48]. In this section we will investigate the effects of detector efficiency, and
filtering of the idler mode, on the generation of two-photon Fock states in the signal
mode conditional on the detection of heralded two-photon states in the idler mode.

4.5.1 Case 1: Perfect Detection in the Triggering Idler Mode

The projector for detecting two photons in any spectral modes ζj and ζj� will be
separated into two parts: the part which detects two photons in orthogonal modes
and the part which detects two photons in the same mode:

Π2 =
�

j

|2; ζj��2; ζj |+
�

j,j
�

j<j
�

|1; ζj�|1; ζj���1; ζj |�1; ζj� | . (4.56)

Refer to the schematic in Figure 4.1(a). The probability of detecting two photons
in the idler mode, with a frequency insensitive detector, is

p2 = �Ψpdc|Π2|Ψpdc� = |N |2|χ|4
� �

k,k
�

k<k
�

|bkbk� |2 +
�

k

|bk|4
�

. (4.57)

Given a two-photon detection in the idler mode, the heralded state in the signal
mode is

ρ2 =
1
p2

Tri

�
Π2|Ψpdc��Ψpdc|

�
(4.58)

= |N2|2
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, (4.60)

where N2 = Nχ2
/
√

p2. The purity is

P2 = Tr[ρ2
2] = |N2|4
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k,k
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|bkbk� |4 +
�

k

|bk|8
�

. (4.61)

The g
(2) for this state is g

(2)
2 = 1/2. It is interesting to note that the g

(2) does not
depend on the purity of the two-photon state. It will always remain at the value of
1/2 regardless of whether the two-photon state is in a Fock state or in some other
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form. This reflects the fact that g
(2) is only sensitive to the photon number, but not

the modal properties of the state.

The maximum fidelity between the heralded state and an ideal two-photon Fock
state |2; ξj� is

F2 = max
j

F (ρ2, |2; ξj�) = �2; ξ0|ρ2|2; ξ0� = |N2|2|b0|4 . (4.62)

The fidelity does not depend on χ. Increasing the strength of the nonlinearity has
an effect only on how often the detector registers two photons; however, once that
happens, the signal mode is always projected into the same state.

4.5.2 Case 2: Inefficient Detection in the Triggering Idler Mode

The probability of detecting two photons in the idler mode, with an inefficient fre-
quency insensitive detector (refer to Figure 4.1(b)), is

p2,ineff = Tr[Π2ρineff ] = |N |2|χ|4η2
� �

k,k
�

k<k
�

|bkbk� |2 +
�

k

|bk|4
�

, (4.63)

where ρineff is defined in equation (4.33). Because our analysis only extends to
second order in photon-number, the expressions for the fidelity and purity will be
the same as they were in Section 4.5.1, where a perfect detector was used. If we
included higher order terms, we would expect the fidelity and purity to vary as a
function of χ and η in a similar fashion to the single-photon case in Section 4.4.

4.5.3 Case 3: Filtering of the Idler State

We now introduce a filter in the idler mode as shown in Figure 4.1(c). After filter-
ing the state, the probability of detecting two photons in the idler mode, with an
inefficient frequency insensitive detector, is

p2,filt = Tr[Π2ρfilt] (4.64)

= |N |2|χ|4
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|bk|4||Tζk
|4 +
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2 + Tkk�Tk�k)
�

, (4.65)

where ρfilt is defined in equation (4.40).
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Given a two-photon detection in the idler mode, the heralded state in the signal
mode is

ρ2,filt =
1
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TrC

�
Π2ρfilt

�
(4.66)
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k̃
⊗

�

k�,k̃�

bk�b
∗
k̃�

T
k�,k̃�Â
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(4.68)

where N2,filt = Nχ2
/
√

p2,filt. Again g
(2)
2,filt = 1/2 as there are always two photons in

the state. The purity of the heralded state is
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The density matrix in equation (4.67) is not diagonal in the |1; ξk� basis. This can
be easily achieved, giving

ρ2,filt =
1
2

�

m,m�

dmdm�Â
†
sτm

Â
†
sτm�

|0��0|Âsτm
Âsτm� (4.70)

=
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d
2
m|2; τm��2; τm|+

�

m,m
�

m<m
�

dmdm� |1; τm�|1; τm���1; τm|�1; τm� | , (4.71)
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where |1; τm� is defined in equation (4.53). The maximum fidelity, between the
heralded state and a pure two-photon state with an optimised spectral distribution
function |2; τl�, is

F2,filt = max
l

F (|2; τl�, ρ2,filt) = max
l

�2; τl|ρ2,filt|2; τl� = max
m

d
2
m . (4.72)

In the extreme case where T̃ (ω) = δ(ω−µ), i.e. the filter picks out a single frequency
µ, the fidelity tends to unity and the signal state tends to the pure state

|Ψ2,filt,δ� =
N2,filt

2

�

k

bkζk(µ)Â†
sξk
|0� ⊗

�

k�

bk�ζk�(µ)Â†
sξk�

|0� (4.73)

= dm|2; τm� , (4.74)

as χ → 0. This implies that it is possible to obtain arbitrarily pure two-photon
states, with the use of spectral filtering and by ensuring the nonlinearity strength is
low.

4.6 Physical Example I - Correlated JSA

As a physical example, we model a type II ppKTP waveguide of length L = 3.6 mm
and a periodicity of Λ = 8.8 µm, pumped with a 400 nm laser with a 1nm FWHM
(σp = 5.00×1012 s−1) which down-converts to 800 nm in the signal and idler modes.
In Figure 4.2(a)-(c), we have plotted the pump function, the PMF and the JSA
for the given parameters. Figure 4.2(d) shows the corresponding Schmidt modes:
initial signal modes and initial idler modes. In addition, it can be seen that after
filtering the idler state, the idler Schmidt modes take on different spectral shapes.
These filtered idler modes are no longer orthogonal to each other and therefore need
to be orthogonalised giving the orthogonalised idler modes. When the idler mode
is detected, the signal state gets projected into a mixture of orthogonal modes, as
shown by the diagonalised signal modes. Filtering and detection of the idler state
changes the spectral shape of the signal state even though there is no physical
interaction. This is a typical effect of entanglement.

In general, the Schmidt decomposition can not be found analytically, but can be
calculated numerically by computing the singular value decomposition of a discre-
tised JSA. Unless stated otherwise, the results in this section were obtained using
an 800 × 800 grid, ranging over 0.2 × 1015 s−1, centered around ωi = ωs = µ. We
note that an insufficiently fine grid, or insufficiently large region, will result in in-
flated values for the purity. The entropy of entanglement for this particular JSA
is E = 4.6, which ranges from zero for a product state to log2 N for a maximally
entangled state of two N -state particles
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Figure 4.2: (a) Gaussian pump function α(ωi + ωs) with a 1nm FWHM at µp = 400
nm. (b) Phase matching function Φ(ωi, ωs) for waveguide of length L = 3.6 mm and a
periodicity of Λ = 8.8 µm. (c) The resulting JSA f(ωi, ωs) = α(ωi + ωs)Φ(ωi, ωs). The
JSA has been plotted as a function of the frequency, however corresponding values for the
wavelength have been included.(d) Schmidt numbers and modes for the JSA (top to bottom):
the first 20 Schmidt numbers bk; the first 5 Schmidt modes ξk(ωs) for the signal state; the
first 5 Schmidt modes ζk(ωi) for the ilder state, as well as a Gaussian filter function of width
σf = 2×1012 s−1 (dashed line); the filtered Schmidt modes T (ωi)ζk(ωi) for the idler state;
the othogonalised idler modes φj(ωi); the diagonalised signal modes τm(ωs)

In this section we present results for: the probability of detecting a single photon
in the idler mode; the g

(2) and purity of the heralded state in the signal mode; and
the fidelity between the signal state and the desired ideal Fock state. We compare
results for: an unfiltered idler state; an idler state filtered with a Gaussian filter
T (ωi) = exp(−(µf − ωi)2/2σ2

f
), of various widths σf and centered at the central

idler frequency, where the filter function has been scaled such that the maximum
value is always 1; as well as the limiting case where T (ωi) = δ(ωi − µf ). We also
present similar results for heralding a two-photon state conditional on the detection
of two photons in the idler mode.
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Generating Single-photon Fock States

Due to the second-order truncation of the down-converted state, we are not con-
sidering 6- (or higher) photon contributions. At χ = 0.5, the fraction of 6-photon
states, to 2-photon states, is roughly χ6

/χ2 = 1/16. We will not plot results beyond
χ = 0.5.

In Figure 4.3(a), we have plotted the probability of detecting a single photon in the
idler mode as a function of the nonlinearity χ and the efficiency of the detector η.
Notice that the probability of detecting a single photon in the idler mode increases
with higher detector efficiency and higher nonlinearity strength, as expected.

The fidelity has been plotted in Figure 4.3(b). The inclusion of a filter has a drastic
effect on the fidelity. It has a greater dependence on the strength of the nonlinearity,
than in the unfiltered case, however the overall fidelity is much higher. Notice as
well that there is a trade-off between the fidelity and the probability of detection.

Figure 4.3: (a) The probability of detecting a single photon in the idler mode for (top to
bottom): no filter; σf = 3×1012 s−1; σf = 2×1012 s−1; σf = 1×1012 s−1. Note that the
probability is plotted on a log scale. (b) The fidelity of the signal state with an ideal Fock
state for (top to bottom): σf = 0; σf = 1×1012 s−1; σf = 2×1012 s−1; σf = 3×1012 s−1;
no filter. (c) The g

(2) of the signal state for (top to bottom): σf = 0; σf = 1×1012 s−1;
σf = 2×1012 s−1; σf = 3×1012 s−1; no filter. Note the change in axis orientation.(d) The
purity of the signal state for (top to bottom): σf = 0; σf = 1×1012 s−1; σf = 2×1012 s−1;
no filter.
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In Figure 4.3(c), we have plotted the g
(2) for the heralded state in the signal mode.

Note that, for visual clarity, the figure orientation has been rotated by π around
the z−axis, with respect to the other plots. It is useful to know that g

(2) = 0
for a single-photon state and 1/2 for a two-photon state. A curious thing is that
decreasing the filter width results in higher fidelities, despite the higher proportion
of two-photon states, as shown by the g

(2). This suggests that for this particular
JSA, the dominant cause of impurity is the spectral entanglement, rather than the
resulting photon-number mixture due to the presence of higher-order terms.

In Figure 4.3(d), we have plotted the purity of the state in the signal mode. Due to
the 4-fold summation, the purity for the filtered case is very demanding computa-
tionally, therefore, we have only included examples of two filter widths. Results for
the filtered case were computed using a 600×600 grid, ranging over 0.16×1015 s−1,
centered around ωi = ωs = µ, and truncating bk with values below 10−2. To achieve
a fidelity of F = 0.95, using a heralding detector with efficiency η = 0.5, we could
choose from a range of filter widths at different nonlinearity strengths. Different
combinations, however, result in slightly different probabilities of success. Figure
4.4 (a) shows the probability of success, and required nonlinearity, for a number of
filter widths.
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Figure 4.4: Probability of detecting a single photon in the idler mode, and required non-
linearity, for a number of filter widths, in order to achieve a fidelity of F = 0.95, using a
heralding detector with efficiency η = 0.5, for: (a) correlated JSA (see Section 4.6); (b)
symmetric JSA (see Section 4.7.1); (c) asymmetric JSA (see Section 4.7.2).
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Generating Two-photon Fock States

We can also analyse the probabilities and fidelities for generating two-photon Fock
states. The results are summarised in Figure 4.5. At χ = 0.25, the fraction of 6-
photon states, to 4-photon states, is roughly χ6

/χ4 = 1/16. We will not plot results
beyond χ = 0.25. Figure 4.5(a) shows the probability for an inefficient detector to
detect two photons in the idler mode. The corresponding fidelities and purities have
been shown in Figure 4.5(b) and do not vary as a function of χ and η.
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Figure 4.5: (a) The probability of detecting two photons in the idler mode for (top to
bottom): no filter; σf = 3×1012 s−1; σf = 2×1012 s−1; σf = 1×1012 s−1. Note that the
probability is plotted on a log scale. (b) The purity and fidelity of the signal state with an
ideal Fock state.

4.7 Physical Example II - Group Velocity Matching

In this section, we examine particular phase matching conditions which result in a
less entangled JSA, and therefore a more pure heralded Fock state. It is common to
approximate the phase matching function as Φ(ωi, ωs) = exp(−γ(∆kL/2)2) where
γ ≈ 0.193. By making this approximation, we can write the JSA as

f(ωi, ωs) ∝ exp
�
−(ωi + ωs − 2µ)2

2σ2
p

�
exp

�
−γ

�∆kL

2

�2�
. (4.75)

In order to make equation (4.75) separable, we require all “cross-terms”, i.e. terms
which contain products of ωi and ωs to vanish. This occurs when the condition

2
σ2

p

+ γL
2(k�s − k

�
p)(k

�
i − k

�
p) = 0 (4.76)

is met, yielding a JSA of the form f(ωi, ωs) ∝ fi(ωi)fs(ωs) [28]. One way to satisfy
the condition in equation (4.76) is to set k

�
p = (k�s + k

�
i
)/2, which results in the
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following condition for the length of the waveguide, as a function of the pump width:

L =

�
8

γσ2
p(k�s − k

�
i
)2

. (4.77)

These conditions generate a symmetric JSA, where both signal and idler modes have
equal widths. Alternatively, rearranging equation (4.76) as follows

4
σpL(k�

i
− k�p)

+ γσpL(k�s − k
�
p) = 0 , (4.78)

we can see that by making L � σ−1, i.e. L → ∞ and setting k
�
p = k

�
s, we can also

obtain a separable JSA. These conditions generate an asymmetric JSA [28].

We have made use of the Gaussian approximation for Φ(ωi, ωs) to obtain the condi-
tions for separability, however we will now input these conditions into the original
sinc form of the function. This analysis will not result in completely pure states being
generated, however it should correspond more closely to experimental observations.
The phase-matching conditions derived here may not necessarily be the optimal so-
lutions. Numerical simulation may reveal phase-matching conditions more suited to
the sinc form of the phase-matching function; however, we do not expect this to be
a large effect.

4.7.1 Symmetric JSA

In order to meet the extended phase matching conditions for a symmetric, separable
JSA, we again model a type II ppKTP waveguide, now of length L = 24.2 mm and
a periodicity of Λ = 68.4 µm, pumped with a 788 nm laser with a 0.7nm FWHM
(σp = 0.9×1012 s−1) which down-converts to 1576 nm in the signal and idler modes.
Unless stated otherwise, the results in this section were obtained using an 800× 800
grid, ranging over 0.06× 1015 s−1, centered around ωi = ωs = µ.

Figure 4.6 shows the JSA and the corresponding Schmidt values and modes. Notice
in the Schmidt decomposition that the first mode is much more dominant than it
was in Section 4.6. The entropy of entanglement for this JSA is E = 0.88. If we had
used the Gaussian approximation for Φ, the JSA would decompose into one pair of
Schmidt modes and the entropy of entanglement would be E = 0. In such a case,
the four-photon term would consist only of two-photon Fock states.

As an intuitive guide to why the above conditions generate the given JSA, notice
that varying the parameter ∆k has the effect of changing the gradient of the phase
matching function Φ(ωi, ωs) (see figure 4.6(b)), rotating it around ωi = ωs = µ while
changing the parameter L, alters the width of the phase matching function. The
goal is to pick ∆k, and therefore k

�
p, and L such that the phase matching function

is perpendicular, and of equal width, to the pump function.
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Figure 4.6: (a) Gaussian pump function α(ωi + ωs) with a 0.7nm FWHM at µp = 788
nm. (b) Phase matching function Φ(ωi, ωs) for waveguide of length L = 24.2 mm and a
periodicity of Λ = 68.4 µm. (c) The resulting JSA f(ωi, ωs) = α(ωi + ωs)Φ(ωi, ωs). The
JSA has been plotted as a function of the frequency, however corresponding values for the
wavelength have been included.(d) Schmidt numbers and modes for the JSA (top to bottom):
the first 20 Schmidt numbers bk; the first 5 Schmidt modes ξk(ωs) for the signal state; the
first 5 Schmidt modes ζk(ωi) for the ilder state, as well as a Gaussian filter function of width
σf = 1×1012 s−1 (dashed line); the filtered Schmidt modes T (ωi)ζk(ωi) for the idler state;
the othogonalised idler modes φj(ωi); the diagonalised signal modes τm(ωs)

As in the previous section, we present results for the probability, purity, g
(2) and

fidelity, for the heralding of one- and two-photon Fock states. For a realistic JSA,
manipulating the phase-matching conditions can result in high purity of the heralded
state, however, it doesn’t reach unity. From Figure 4.6(c), it can be seen that the
outer lobes contribute to the spectral correlations and perhaps it is possible to
increase the purity of the heralded state by filtering them out. Therefore, we will
again compare results for: an unfiltered idler state; an idler state filtered with a
Gaussian filter T (ωi) = exp(−(µf − ωi)/2σ2

f
), of various widths σf and centered at

the central idler frequency; as well as the limiting case where T (ωi) = δ(ωi − µf ).

In Chapter 5, we discuss a technique for reducing the side lobes without filtering.
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Generating Single-photon Fock States

Figure 4.7(a) shows the probability of detecting a single photon in the signal mode.
Since most of the photons will have spectral distributions within the filter width, we
do not see a very big drop in the probability, when filtering.

Figure 4.7(b) shows the fidelity. We distinguish between these surfaces by referring
to their values at the point χ = 0 and η = 0. Immediately we can see that the
fidelity is much higher than in section 4.6. In the region of interest, filtering the
idler mode increases the fidelity of the signal state with a single photon. Decreasing
the filter width can be detrimental to the fidelity when the nonlinearity and the
detector efficiency are high.

Figure 4.7(c) shows the g
(2) and figure 4.7(d) shows the purity of the state in the

signal mode. Again, will distinguish between these surfaces by referring to their

Figure 4.7: (a) The probability of detecting a single photon in the idler mode for (top to
bottom): no filter; σf = 3×1012 s−1; σf = 2×1012 s−1; σf = 1×1012 s−1. Note that the
probability is plotted on a log scale. (b) The fidelity of the signal state with an ideal Fock
state for (top to bottom at χ = 0 and η = 0): σf = 0; σf = 1×1012 s−1; σf = 2×1012 s−1;
σf = 3×1012 s−1; no filter. (c) The g

(2) of the signal state for (top to bottom): σf = 0;
σf = 1×1012 s−1; σf = 2×1012 s−1; σf = 3×1012 s−1; no filter. Note the change in axis
orientation.(d) The purity of the signal state for (top to bottom at χ = 0 and η = 0):
σf = 0; σf = 1×1012 s−1; σf = 2×1012 s−1; no filter.
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values at the point χ = 0 and η = 0. Results for the filtered case were computed
using a 600× 600 grid, ranging over 0.06× 1015 s−1, centered around ωi = ωs = µ,
and truncating bk with values below 10−2.

Figure 4.4 (b) shows the probability of success, and required nonlinearity, for a
number of filter widths, in order to achieve a fidelity of F = 0.95, using a detector
with efficiency η = 0.5. Note that while the probability of success is greatly enhanced
by using a source-engineered state, the required pump powers are nearly the same.
Also notice the “flat” region, where the probability does not change much, between
σf = 0.6 × 1012 s−1 and 0.7 × 1012 s−1. This corresponds to the “dark” region
between the lobes on the JSA. Over this region, we do not expect much change in
the flux.

Generating Two-photon Fock States

We can also analyse the probabilities and fidelities for generating two-photon Fock
states. The results are summarised in Figure 4.8. Figure 4.8(a), shows the prob-
ability for an inefficient detector to detect two photons in the idler mode. The
corresponding fidelities and purities have been shown in Figure 4.8(b). The fidelity
and purity do not vary as a function of χ and η.
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Figure 4.8: (a) The probability of detecting two photons in the idler mode for (top to
bottom): no filter; σf = 3×1012 s−1; σf = 2×1012 s−1; σf = 1×1012 s−1. Note that the
probability is plotted on a log scale. (b) The purity and fidelity of the signal state with an
ideal Fock state.

4.7.2 Asymmetric JSA

In order to meet the extended phase matching conditions for an asymmetric sep-
arable JSA, we again analyse a type II ppKTP waveguide, of length L = 80 mm
and a periodicity of Λ = 232 µm, pumped with a 1.93 µm laser with a 3nm FWHM
(σp = 0.64×1012 s−1) which down-converts to 3.85 µm in the signal and idler modes.
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Figure 4.9: (a) Gaussian pump function α(ωi + ωs) with a 3nm FWHM at µp = 1.93 µm.
(b) Phase matching function Φ(ωi, ωs) for waveguide of length L = 80 mm and a periodicity
of Λ = 232 µm. (c) The resulting JSA f(ωi, ωs) = α(ωi + ωs)Φ(ωi, ωs). The JSA has
been plotted as a function of the frequency, however corresponding values for the wavelength
have been included.(d) Schmidt numbers and modes for the JSA (top to bottom): the first
20 Schmidt numbers bk; the first 5 Schmidt modes ξk(ωs) for the signal state; the first
5 Schmidt modes ζk(ωi) for the ilder state, as well as a Gaussian filter function of width
σf = 100 ×109 s−1 (dashed line); the filtered Schmidt modes T (ωi)ζk(ωi) for the idler state;
the othogonalised idler modes φj(ωi); the diagonalised signal modes τm(ωs)

We note that single-photon detection is not particularly practical at this wavelength,
however for consistency, we have chosen to use a ppKTP waveguide throughout this
chapter. The same JSA can be achieved in different systems, at more practical wave-
lengths. See, for example, Mosley et al. [31]. Unless stated otherwise, the results in
this section were obtained using an 800×800 grid, ranging over 8×1012 s−1, centered
around ωi = ωs = µ.

Figure 4.9 shows the JSA and the corresponding Schmidt values and modes. Notice
in the Schmidt decomposition that the first mode is even more dominant than in
the symmetric case. The entropy of entanglement for this JSA is E = 0.37.

Setting k
�
p = k

�
s generates a vertical phase matching function. As long as the waveg-

uide is sufficiently long, and therefore, the width of the phase matching function
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sufficiently thin, and the pump is sufficiently wide, the result will be a vertical,
almost elliptical and very thin JSA.

As in the previous section, we present results for the probability, purity, g
(2) and

fidelity, for the heralding of one and two photon Fock states. Although it is possible
to achieve purities arbitrarily close to unity by increasing the length of the waveguide,
the vertical orientation of the JSA places it in a unique position to take advantage of
spectral filtering. We will once again compare results for: an unfiltered idler state;
an idler state filtered with a Gaussian filter T (ωi) = exp(−(µf −ωi)/2σ2

f
), of various

widths σf and centered at the central idler frequency; as well as the limiting case
where T (ωi) = δ(ωi − µf ).

Generating Single-photon Fock States

Figure 4.10(a) shows the probability of detecting a single photon in the signal mode.
Since most of the photons will have spectral distributions within the filter width,
we do not see a very big drop in the probability with filtering, until the filter is so
narrow that it cuts into the central lobe.

Figure 4.10(b) shows the fidelity. We will distinguish between these surfaces by
referring to their values at χ = 0.5 and η = 1. Again, filtering the idler mode
increases the fidelity of the signal state with a single photon in the low-χ and low-η
regimes.

Figure 4.10(c) shows the g
(2) and Figure 4.10(d) shows the purity of the state in the

signal mode. Again, we will distinguish between these surfaces by referring to their
values at the point χ = 0.5 and η = 1. Results for the filtered case were computed
using a 600× 600 grid, ranging over 8×1012 s−1, centered around ωi = ωs = µ, and
truncating bk with values below 10−2.

Figure 4.4 (c) shows the probability of success, and required nonlinearity, for a
number of filter widths, in order to achieve a fidelity of F = 0.95, using a heralding
detector with efficiency η = 0.5. Note that, as with the symmetric case, while the
probability of success is greatly enhanced by using a source engineered state, the
required pump powers are nearly the same. Also notice the “flat” region, where the
probability does not change much, between σf = 0.3× 1012 s−1 and 0.35× 1012 s−1.
This corresponds to the “dark” region between the lobes on the JSA. Over this
region, we do not expect much change in the flux.



§4.7 Physical Example II - Group Velocity Matching 65

Figure 4.10: (a) The probability of detecting a single photon in the idler mode for (top
to bottom): no filter; σf = 150×109 s−1; σf = 100×109 s−1; σf = 50×109 s−1. Note
that the probability is plotted on a log scale. (b) The fidelity of the signal state with an
ideal Fock state for (top to bottom at χ = 0.5 and η = 1): no filter; σf = 150×109 s−1;
σf = 100×109 s−1; σf = 50×109 s−1; σf = 0. (c) The g

(2) of the signal state for (top
to bottom): σf = 0; σf = 50×109 s−1; σf = 100×109 s−1; σf = 150×109 s−1; no filter.
Note the change in axis orientation.(d) The purity of the signal state for (top to bottom at
χ = 0.5 and η = 1): no filter; σf = 150×109 s−1; σf = 100×109 s−1; σf = 50×109 s−1;
σf = 0.
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4.7.3 Generating Two-photon Fock States

We can also analyse the probabilities and fidelities for generating two-photon Fock
states. The results are summarised in Figure 4.11. Figure 4.11(a), represents the
probability of detecting two photons in the idler mode. The corresponding fidelities
and purities have been shown in Figure 4.8(b). They do not vary as a function of χ
and η.
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Figure 4.11: (a) The probability of detecting two photons in the idler mode for (top to
bottom): no filter; σf = 150×109 s−1; σf = 100×109 s−1; σf = 50×109 s−1. Note that the
probability is plotted on a log scale. (b) The purity and fidelity of the signal state with an
ideal Fock state.

4.8 Discussion

We have calculated the spectrally entangled output state of a parametric down-
converter to second order in photon number, with the goal of generating heralded
one- and two-photon Fock states in one spatial mode (signal), conditional on the
detection of one or two photons in the other spatial mode (idler). We have presented
analytical expressions for the heralded state after the idler mode is spectrally filtered
using a Gaussian filter and detected with an inefficient detector. The heralded signal
state was then characterised by its g

(2) and purity. In addition, we calculated the
fidelity of the heralded state with the desired ideal Fock state.

As a physical example, we modeled a type II ppKTP waveguide, pumped by lasers
at wavelengths of 400 nm, 788 nm and 1.93 µm. We found that in the first example,
where no effort was made to perform any group velocity matching, the results were
states with very low purity. After strong spectral filtering, Fock states with arbi-
trarily high purity could be achieved, however at very low probabilities of success.
To achieve a fidelity of F = 0.95 for a single-photon state, using a heralding detector
with efficiency η = 0.5, the probability of success would be on the order of 10−4.
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The latter two examples, which employ group velocity matching, resulted in much
higher purity states, however, some additional filtering was still required to achieve
very high purity states. Both the symmetric and asymmetric examples were able to
achieve a fidelity, with a single-photon Fock state, of F = 0.95, using a heralding
detector with efficiency η = 0.5, with probabilities of success on the order of 10−2.
High-purity two-photon Fock states were also possible. While results were com-
parable for the symmetric and asymmetric examples, this was due to our choice of
physical parameters. The asymmetric case would be able to achieve higher fidelities,
with no filtering, by choosing a longer waveguide.

In a waveguide, the output modes are collinear with the pump field, resulting in
no transverse momentum components. In bulk crystal, where one needs to consider
the broad range of momentum vectors in the pump field, a more general treatment
(see e.g. [62]) would reveal entanglement between the down-converted modes in the
transverse momentum degree of freedom. The consequences of entanglement in this
degree of freedom will be similar to those of spectral entanglement: the heralded
state will become mixed in the transverse momentum degree of freedom; filtering this
degree of freedom will introduce photon-number mixedness in the heralded state.

In this chapter, we modeled spectral filters with Gaussian profiles. Other filter
profiles are possible and may be more effective. However, in the scenario considered
in this chapter, the dominant effects are strong spectral correlations and subsequent
photon-number mixing. Therefore, we do not expect optimisation of the filter shape
to provide drastic improvements.
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Chapter 5

Tailoring the Nonlinearity of a
Nonlinear Crystal

Photon sources based on spontaneous parametric down-converstion are an ubiqui-
tous tool for quantum computation [42], quantum communication [63] and quantum
metrology [64, 65]. They are also becoming increasingly important in more spe-
cialised applications such as quantum imaging [66], quantum lithography [67] or
optical coherence tomography [68]. As these experiments evolve, more stringent
requirements are placed on the characteristics of the created quantum light states.
In particular, to produce high-purity heralded, or even near deterministic single
photons, the spectral shape and correlations of the created photon pairs must be
carefully engineered.

In this chapter, we consider type-II down-conversion in a quasi-phasematched crystal
with a longitudinally non-uniform grating. We can synthesise photon pairs with
arbitrary spectral amplitudes by modulating the nonlinearity profile χ(z) of a crystal
through different-order poling without changing the phase-matching conditions. We
tailor a spectral photon-pair amplitude with a Gaussian profile, which is generally
optimal for optical mode matching [36]—a critical consideration in any experiment
involving single photons. Although this can be achieved by filtering, this inevitably
leads to loss and mixing.

This chapter is organised as follows. In Section 5.1, we introduce the relationship
between the nonlinear profile of a crystal and the spectral amplitude of the down-
converted photons. In Section 5.2, we design a crystal with a discrete approximation
to a Gaussian nonlinearity profile and characterise the custom poled crystal in Sec-
tion 5.3. We confirm the spectral amplitude of the down-converted photons using
two-photon interference experiments in Sections 5.4 and 5.5. In Section 5.6, we nu-
merically show how our method can be applied for attaining one of the currently
most important goals of single-photon quantum optics, the creation of pure single
photons without spectral correlations. We demonstrate that this technique may be
used to generate other spectral profiles, in Section 5.7, before discussing our results

69
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in Section 5.8.

The work in this chapter was done in collaboration with Alessandro Fedrizzi, an ex-
perimental physicist in the Quantum Technology Lab at The University of Queens-
land. Dr Fedrizzi performed the two-photon interference experiments and was in-
volved in writing, and creating figures for, the journal article from which this chapter
has been adapted [69]. We both contributed to the journal article in an equal ca-
pacity.

5.1 Spectral Amplitude of Down-converted Photons

Theoretically, the two-photon state created by down-conversion is described by [70]

|ψ� =
� �

dωidωsf(ωi, ωs)â†i (ωi)â†s(ωs)|0� (5.1)

where f(ωi, ωs) = α(ωi + ωs)Φ(ωi, ωs) is the joint spectral amplitude of the created
photons in the idler and signal modes respectively (for details, refer to the Section
2.4). The spectral properties of down-converted photons can be manipulated via
the pump envelope function α(ωi +ωs) [71], or as we show here, the phase matching
function (PMF) Φ(ωi, ωs). We use a monochromatic pump α(ωi +ωs) = δ(ωi +ωs−
µp) where µp is the pump frequency, and directly tailor Φ(ωi, ωs), which is related
to the nonlinearity profile of the crystal via the Fourier transform

Φ(ωi, ωs) =
√

2π

� ∞

−∞
χ(z)e−i∆k(ωi,ωs)zdz (5.2)

where χ represents the nonlinear coupling which is dominated by the material non-
linearity, and ∆k is the phase mismatch, defined in Section 2.4.2. It is sometimes
useful to Taylor expand the phase mismatch to first order around the mean idler
and signal frequencies, µi and µs, such that ∆k(ωi, ωs) = k

�
i
(ωi−µi) + k

�
i
(ωi−µi)−

k
�
p(ωi + ωs − µi − µs).

There are several methods to control the joint spectral amplitudes of photons created
in down-conversion in a QPM crystal [38, 72]. For example, imposing a linear
chirp on the poling period Λ has been used for the generation of ultra-broad, top-
hat shaped photons [68] for optical coherence tomography. However, the currently
known methods involve changing Λ, and thus, the often carefully-tailored phase-
matching conditions.

According to equation 5.2, the phase matching function of a standard crystal with
a uniform nonlinearity profile is Φ(ωi, ωs) = sinc(∆kL/2). However, to generate a
Gaussian phase matching function, we require a crystal with a Gaussian nonlinearity
profile.
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5.2 Tailoring the Nonlinearity

While it is non-trivial to directly change the material properties, we can make use
of higher-order poling to realise a variety of nonlinearity strengths (refer to Section
2.4.3). We exploited this feature to design a crystal consisting of a number of discrete
sections, each with a different χeff, discretely approximating the desired Gaussian
shape.

We treat each crystal section s as a rectangular function with a nonlinearity inversely
proportional to the poling order ms. The nonlinearity profile for the custom-poled
crystal is then given by

χt(z) =
N�

s=1

1
ms

u

�1
2

s�

r=1

mrnrΛ− z

�
u

�
z − 1

2

s−1�

r=1

mrnrΛ
�

, (5.3)

where u is the Heaviside step function, mr is the poling order of the rth section, nr

is the number of domains within the rth section, N is the total number of sections
and Λ is the poling order. For type-II, first-order QPM of 410 nm→820 nm+820 nm,
the poling order is Λ = 10.85µm. Table 5.1 lists the values for m and n used for the
tailored Gaussian crystal.

s m n D (%) s m n D (%)
1, 21 32 2 50 7, 15 5 3 50
2, 20 15 2 25 8, 14 4 8 50
3, 19 11 2 50 9, 13 3 12 50
4, 18 9 2 37.5 10, 12 2 45 50
5, 17 7 2 50 11 1 257 48.4
6, 16 6 2 41.6

Table 5.1: Values for poling order m, domain number n and Duty cycle D used to generate
a discrete approximation to a Gaussian nonlinearity profile.

According to equation 5.2, the joint spectral amplitude of the down-converted pho-
tons from the tailored crystal will be

Φt(∆k) =
N�

s=1

1
ms

�
exp

�
−i∆k

1
2

s�

r=1

mrnrΛ
�
− exp

�
i∆k

1
2

s−1�

r=1

mrnrΛ
��

. (5.4)

Figure 5.1a) shows the tailored nonlinearity profile χt(z), defined in equation (5.3),
superimposed with the target Gaussian profile χg(z). The corresponding PMF
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Φt(∆k) is very similar to a Gaussian function, as shown in Figure 5.1b). Com-
pared to the sinc-shaped phase matching function of a ppKTP of the same effective
length as the cpKTP (5.67 mm), the side lobes on either side of the central peak
are significantly suppressed. This becomes even more evident when considering the
spectral intensity (see inset).

The design of the nonlinearity profile is subject to a number of constraints. First of
all, the nonlinearity of each section is limited to discrete values proportional to 1/m.
Larger values of m provide smoother transitions between successive nonlinearites,
however this leads to a greatly reduced photon creation rate. Second, the width of
each section must be an integer number of mΛ/2 and a minimum of 2mΛ, therefore,
larger values of m may demand prohibitively long sections. The ratio between
positively and negatively poled regions—known as the duty cycle D = l/mΛ where
l is the length over which the sign of the nonlinear coefficient remains constant—was
chosen to be 50% for odd values of m and as close as possible to 50% for even values,
as is shown in Table 5.1.

While the basic model presented here is strictly not valid due to the small number
of domains within each section of χt(z), detailed modeling (refer to Appendix A.2)
reveals a strong agreement with the basic model, in the region of interest, i.e. around
∆kp = 0. The detectors used in the above experiment are mainly sensitive to the
frequency range over which the two models are in agreement and therefore the basic
model is sufficient for comparison with experiment. The broad spectral filtering
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Figure 5.1: a) Nonlinearity profile for the cpKTP crystal χt(z) (solid yellow line) and target
Gaussian profile χg(z) = exp(−(z/Leff)2/γ) (black dashed line) with effective length Leff =
5.67mm (green dot-dashed line) and γ ≈ 0.193 (see Appendix A.1). b) Phase-matching
function amplitudes and intensities (inset) for the cpKTP (yellow solid line) compared to a
ppKTP of the same effective length Leff (green dot-dashed line) and target Gaussian profile
ΦG(ωi, ωs) = exp(−γ(∆kL/2)2) (black dashed line). An image of part of the actual cpKTP
crystal (see Figure 5.2) is shown below figure a).
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1Λ
10.85μm

2Λ
21.7μm

a)

b)

...100 μm

123456791115m=32

Figure 5.2: a) Magnified image of part of the custom-poled KTP crystal. Vertical lines
separate sections with constant nonlinearity, with their poling order m, length L and poling
duty cycle D. b) Zoom into the transition from poling order m = 1 to m = 2. The crystal
was custom-ordered from Raicol Crystals Ltd., www.raicol.com. Due to a slight mismatch
between design and actual domain lengths, the crystal was shortened by a few tens of µm

on one side.

which, in effect, is imposed by the spectral response of the detector will not give rise
to the photon-number mixing described in Chapter 4, as this is brought on by edge
effects of the filter. The edges of the spectral response function of the detectors used
in this experiment lie in the region of negligible amplitude.

5.3 The Custom-poled Crystal

A 10 mm long Potassium Titanyl Phosphate (cpKTP) crystal was custom-poled
according to the design put forward in the previous section. A microscopic image
of part of the cpKTP crystal is shown in Figure 5.2a). One can clearly see the
individual sections with different poling orders, which line up with the theoretical
design almost perfectly. Figure 5.2b) shows a magnified view of a transition between
poling-order sections m=1 and m=2.

The custom-poled crystal was tested in a typical down-conversion setup, see Fig-
ure 5.3, and compared to a 10 mm long ppKTP crystal (Λ=10.95 µm). The custom-
poling technique decreases the overall nonlinearity and reduces the effective length of
the structure (see Appendix A.1). Therefore, a lower photon-pair yield and broader
bandwidths when compared to a standard periodically poled KTP (ppKTP) with
the same length and phase-matching, are expected. For the two crystals, we ex-
pected a relative photon pair rate of 34.4%. The measured detection rate (detected
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without a beam-splitter) was ∼10 kpairs/s for the tailored and ∼33 kpairs/s for the
standard crystal, respectively. This corresponds to a relative yield of ∼30.4%; we
attribute the small reduction in efficiency to the fact that the custom-poled crystal,
in contrast to our standard crystal, was not anti-reflection coated.

PBS

ppKTP

POL

BS

ΔtcpKTP

TEC

LP

Figure 5.3: a) Experimental scheme. The nonlinear crystals (cpKTP, ppKTP) were
temperature-stabilised with a thermoelectric element (TEC) and pumped by a 410 nm,
grating-stabilised diode laser. The emitted orthogonally polarised photon pairs were split at
a polarising beamsplitter (PBS) and coupled into single-mode fibres. They passed two fibre
polarisation-controllers (POL) before they were superposed at a 50/50 fiber beamsplitter
(BS). The photons were then detected by two avalanche single-photon detectors within a
coincidence time window of 4.4 ns. We obtained two-photon interference patterns by chang-
ing the relative delay ∆t between the photons with a motorised translation stage. The only
filters in use were two RG715 long-pass filters (LP).

5.4 Two-photon Interference

The joint spectral amplitude of photons created in the cpKTP was verified in a
two-photon interference experiment. When two indistinguishable photons hit a sym-
metric beamsplitter, they will always be found in the same output port. This phe-
nomenon was first reported in the landmark experiment by Hong, Ou and Mandel
[61], who observed a drop of the coincidence photon count probability behind a
beam splitter as a function of the temporal delay between the photons. A beam-
splitter of transmitivity η = 1/2, followed by a time delay ∆t can be modeled via
the transformation

â
†
i
(ωi) →

1√
2

�
eit1ωi b̂

†
1(ωi)− iei(t2+∆t)ωi b̂

†
2(ωi)

�
, (5.5)

â
†
s(ωs) →

1√
2

�
−iei(t1−∆t)ωs b̂

†
1(ωs) + eit2ωs b̂

†
2(ωs)

�
. (5.6)
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Applying this to the state in equation 5.1, gives

|ψ� =
1
2

� �
dωidωsf(ωi, ωs)

×
�
eit1ωieit2ωs b̂

†
1(ωi)b̂†2(ωs)− ei(t2+∆t)ωsei(t1−∆t)ωi b̂

†
2(ωi)b̂†1(ωs)

�
|0�

(5.7)

where only terms corresponding to a single photon in each mode have been retained
and f(ωi, ωs) = α(ωi + ωs)Φ(ωi, ωs).

For a monochromatic pump, we make the substitution α(ωi +ωs) → δ(ωi +ωs−µp).
We also define ωs = (µp − ν)/2 to give

|ψ� =
1
2

�
dνΦ

�
µp + ν

2
,
µp − ν

2

��
eit1(

µp+ν
2 )eit2(

µp−ν
2 )

b̂
†
1

�
µp + ν

2

�
b̂
†
2

�
µp − ν

2

�

− ei(t2+∆t)(
µp+ν

2 )ei(t1−∆t)(
µp−ν

2 )
b̂
†
2

�
µp + ν

2

�
b̂
†
1

�
µp − ν

2

��
|0�

(5.8)
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where t = (t1 − t2)/2. The probability amplitude for detecting one photon in each
down-conversion mode is

a(t,∆t) =
ei(

t1+t2
2 )

2
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,
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where F(x) =
�∞
−∞ dξf(ξ)e−i2πxξ is the Fourier transform and F̂ is the inverse

Fourier transform. The coincidence detection probability is therefore

pc(∆t) =
a0
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dt

���F̂
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− F
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2π

����
2
, (5.12)

where a0 = 1/(
�

dt|F̂(t/2π)|2+
�

dt|F((t−∆t)/2π)|2) is the normalisation constant.

To calculate the coincidence probability from the phase matching function (PMF) of
a standard crystal, we make the substitution Φ(ωi, ωs) = sinc(∆kL/2) → sinc((ν −
µ(T ))/ξ) where ν = ωi−ωs, µ = µi−µs and ξ = 4/(L(k�

i
−k

�
s)) is directly connected

to the spectral single-photon bandwidth ∆ω via ξ = 2∆ω/π [73]. Substituting
this into equation 5.12 and evaluating the time integral, we get the coincidence
probability for a standard crystal
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pcpp(∆t, µ) =

�
1
2

�
1− ζ

2µ
sin(µ

ζ (2− ζ|∆t|))
�

for |∆t| < 2
ζ

1
2 otherwise

(5.13)

The coinicidence probability for the custom poled crystal can be similarly calculated
from equation 5.12 using the phase matching function in equation 5.4.

The recorded interference patterns for the cpKTP, and the standard ppKTP are
shown in Figure 5.4, along with the theoretical interference patterns calculated
straight from the PMFs in Figure 5.1b). The differing bandwidths result from
the different effective lengths of the two crystals. The interference pattern for the
standard crystal is triangular, just as expected for the sinc-shaped PMF [73]. The
pattern for the tailored crystal departs from the triangular shape and indeed ap-
proximates a Gaussian. The interference visibility was ∼ 95% for both crystals,
confirming that the modulation of the nonlinearity did not have negative effects on
the distinguishability of the photons.
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Figure 5.4: Two-photon interference patterns for the cpKTP crystal (yellow circles, top
curve) compared to a standard ppKTP (green diamonds, bottom curve). The red lines show
the theoretical values, calculated directly from the respective PMF for each crystal, with the
interference visibility as the single free parameter. The reduced chi-square values of these fits
are 3.07 and 5.51, respectively. The grey lines show least-square fits of a triangular pattern
to the tailored crystal data and a Gaussian fitted to the normal crystal, with reduced chi-
square values of 50.59 and 23.10, respectively, underlining the strong divergence from these
shapes. Coincidence probabilities pc were obtained by normalising detected pairs to twice
the averaged counts outside the coherence length. All error bars are smaller than symbol
size.
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5.5 Quantum Beating

To further explore the underlying spectral correlations in the PMF, we measured
spatial quantum beating patterns. We detuned the center frequencies of the down-
conversion photons via a change in crystal temperature [73] away from its optimal
value for collinear, degenerate quasi-phase-matching and again observed two-photon
interference. The results in Figure 5.5 show that the tailored crystal shows less
distinct beating, in particular, less anti-bunching, i.e. coincidence probability values
above the random level of 0.5. The maximum value for the cpKTP was 0.546±0.005
compared to 0.586±0.003 for the standard crystal, a significant reduction relative to
the base-line of 0.5. The theory values for a) were obtained directly from [73], while
for b), we followed the calculation in [73] using the PMF for our tailored crystal,
Figure 5.1b).

The observed anti-bunching occurs when the frequency-detuned spectral wavefunc-
tion, essentially the joint spectral amplitude, of the two-photon state is partially
anti-symmetric, which in turn reveals the frequency entanglement intrinsic to down-
conversion [74, 73, 75]. A Gaussian spectral amplitude is always positive and there-
fore does not have anti-symmetric components, which explains the reduced beating
in the interference patterns of the custom-poled crystal.

From these measurements, we conclude that the actual PMF agrees exceedingly well
with the theory prediction. It is not truly Gaussian, but a very good approximation.
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Figure 5.5: Spatial quantum beating for the cpKTP (a) and the ppKTP (b) crystals,
for various center-frequency detunings ∆ω = ωi − ωs. The lines show the ideal values,
calculated from the respective PMF, with the interference visibility (∼ 0.95) as the single
free parameter. Coincidence probabilities pc were obtained by normalising detected pairs
to twice the averaged counts outside the coherence length. All error bars are smaller than
symbol size.
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5.6 Separable Joint Spectral Amplitude

One situation in which we expect this method to be quite useful is the generation
of pure heralded single photons. In Chapter 4, we saw that down-converted single-
photons have strong spectral correlations which result in the degraded purity of a
heralded state. These correlations can be reduced by filtering the heralded mode,
however, spectral filtering is undesirable because it lowers the overall single-photon
production rate as well as introducing photon-number mixedness which limits the
allowable pump intensity.

We show that, in combination with our method of modulating the crystal non-
linearity, group velocity matching can be used to create high-purity single photon
states without the use of spectral filtering. We consider the group velocity matched
scenario introduced in Section 4.7.1. For type-II, first-order QPM in KTP, these
group velocity conditions are met for a poling order Λ = 68.4µm pumped at 788 nm
→ 1.58 µm+1.58 µm. Recall that these conditions generated an almost symmetric
JSA with side lobes which degraded the purity of the heralded photons.

To eliminate the side lobes, we want to generate a Gaussian PMF, ΦG(ωi, ωs) =
exp(−γ(∆kL/2)2), whose FWHM matches that of the PMF generated by a standard
crystal, Φ(ωi, ωs) = sinc(∆kL/2). We designed two discrete approximations to the
desired Gaussian profile—the first with a minimum poling order mmin = 1, and the
second with a minimum poling order mmin = 2. The later crystal has a lower overall
nonlinearity, but offers a finder discretisation. Figure 5.6 shows the nonlinearity
profiles for both crystals and the corresponding phase matching functions, generated
using equations 5.3 and 5.4 respectively, using the values for the poling order m and
domain number n given in Table 5.2.
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Figure 5.6: a) Nonlinearity profiles and b) corresponding PMFs for: mmin = 1 tailored
crystal (solid black line); mmin = 2 tailored crystal (dot-dashed black line); and an ideal
crystal with a Gaussian profile (dashed red line). The corresponding sinc PMF (thin dotted
line) has been included for comparison.

As we saw in Section 4.7.1, for a typical group-velocity-matched configuration with
a symmetric joint spectral amplitude, the maximum purity a heralded single photon
state can achieve is 0.81 (assuming no spectral filtering), due to the typical sinc
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mmin = 1 mmin = 2

s m n
1, 17 22 2
2, 16 11 2
3, 15 8 2
4, 14 6 2
5, 13 5 2
6, 12 4 4
7, 11 3 8
8, 10 2 26

9 1 100

s m n
1, 17 30 2
2, 16 16 2
3, 15 11 2
4, 14 8 2
5, 13 6 3
6, 12 5 3
7, 11 4 7
8, 10 3 17

9 2 21

Table 5.2: Values for poling order m, domain number n used to generate a discrete ap-
proximation to a Gaussian nonlinearity profile

profile of the PMF. Using equation 4.27 to calculate the purity of the heralded
photon, we numerically compare two designs for cpKTP crystals (see Figure 5.6),
with a standard ppKTP crystal following the method in Chapter 4. Table 5.3 shows
the calculated purities for our two designs compared with a standard periodically
poled crystal.

Crystal L (mm) p

ppKTP 24.2 0.81
cpKTP mmin = 1 40.5 0.97
cpKTP mmin = 2 41.6 0.99

Table 5.3: Numerical comparison of the purity p of heralded single-photons of a standard
crystal and two cpKTP crystals of length L. Note that the effective length of both cpKTP
crystals is Leff = 24.2mm

5.7 Arbitrary Phasematching Functions

The method introduced in this chapter can be applied to the generation of arbitrarily
shaped phase matching functions. As described above, the nonlinearity profile of the
crystal should be tailored to the Fourier transform of the desired PMF. Figure 5.7a)
shows an example of a discrete approximation to a sinc function nonlinearity profile,
which can be generated from the expression in equation 5.2 using the values for
the poling order m and domain number n in Table 5.4. The resulting approximate
triangular nonlinearity profile, generated from equation 5.3, is shown in figure 5.7b).
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Figure 5.7: a) Nonlinearity profile for a tailored crystal (solid black line) and target sinc2(z)
function (dashed red line). b) Phase matching functions for a tailored crystal (solid black
line) and target triangular shaped function (dashed red line).

Figure 5.8a) shows an example of a discrete approximation to a sinc2 function non-
linearity profile. Notice that the sinc2 function contains negative values of the non-
linearity. Negative values can be implemented by inverting the relevant domain [38].
Effectively, this consists of picking the poling order required for the equivalent posi-
tive nonlinearity and then flipping the direction. The resulting approximate square
nonlinearity profile, generated from equation 5.3, is shown in figure 5.7b).
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Figure 5.8: a) Nonlinearity profile for a tailored crystal (solid black line) and target sinc(z)
function (dashed red line). b) Phase matching functions for a tailored crystal (solid black
line) and target top-hat function (dashed red line).
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triangle square

s m n
1, 41 60 8
2, 40 200 2
3, 39 50 3
4, 38 25 4
5, 37 20 8
6, 36 25 4
7, 35 50 3
8, 34 100 2
9, 33 30 2
10, 32 20 2
11, 31 15 2
12, 30 11 2
13, 29 9 2
14, 28 8 2
15, 27 7 2
16, 26 6 6
17, 25 5 6
18, 24 4 10
19, 23 3 20
20, 22 2 100

21 1 300

s m n s m n
1, 81 65 2 22, 60 20 6
2, 80 20 7 23, 59 20* 10
3, 79 14 30 24, 58 9* 8
4, 78 20 7 25, 57 7* 6
5, 77 65 2 26, 56 6* 10
6, 76 65* 2 27, 55 5* 80
7, 75 19* 7 28, 54 6* 6
8, 74 14* 5 29, 53 7* 6
9, 73 12* 6 30, 52 9* 6
10, 72 11* 20 31, 51 20* 5
11, 71 12* 6 32, 50 15 5
12, 70 14* 5 33, 49 9 2
13, 69 19* 6 34, 48 8 2
14, 68 50* 2 35, 47 7 2
15, 67 50 2 36, 46 6 5
16, 66 19 6 37, 45 5 4
17, 65 12 8 38, 44 4 15
18, 64 9 12 39, 43 3 20
19, 63 8 25 40, 42 2 120
20, 62 9 12 41 1 430
21, 61 12 8

Table 5.4: Values for poling order m and domain number n used to generate discrete
approximations to triangular and top-hat nonlinearity profiles. * denotes that the domain
should be flipped to generate a negative effective nonlinearity.
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5.8 Discussion

We demonstrated Gaussian shaping of single-photon wave-packets via indirect mod-
ulation of the nonlinearity of a crystal. Our method can be used to generate other
phase-match profiles of interest, such as a triangle or a top-hat. The observed two-
photon interference patterns agree perfectly—within error—with theoretical predic-
tions.

The most important application of this technique is related to the creation of her-
alded single photons—we have shown numerically that the Gaussian shape we tailor
leads to a drastic improvement in the purity of heralded single photons. The re-
duction in the effective nonlinearity, and thus pair yield, is an acceptable tradeoff
given that modern crystals have drastically reduced the pump power requirements
in recent experiments. In return, compared to the simpler alternative of just filtering
out the lobes, one can pump at a higher power without introducing photon number
mixedness, and therefore create purer higher-photon-number Fock states. We ex-
pect this technique to be applicable in any scenario where periodic poling is already
in use, however, there may be certain materials for which the refractive index and
pumping wavelength result in a large poling period. This would either have an effect
on the quality of the approximation to the nonlinearity profile, and therefore, the
purity of the heralded photon or result in prohibitively long crystals.

It would be interesting to apply our idea of an engineered material nonlinearity
to four-wave-mixing photon-pair sources in photonic-crystal fibres, where the sinc-
shaped phase-matching function is a major problem. In [76], for example, the au-
thors observe a two-photon interference visibility reduction of 20%, which they at-
tribute to this phenomenon. However, it is already non-trivial to achieve group-
velocity matching in photonic-crystal fibres in the first place and modulating the
non-linearity will inevitably come at the expense of a change of phase-matching
conditions.



Chapter 6

Time Ordering in Spontaneous
Parametric Down-conversion

In order to study the spectral properties of the down-conversion process, one needs to
examine the evolution within the crystal. The time dependent Hamiltonian, which
governs this evolution, does not commute with itself at all times, as is shown in
Appendix B.1. Recall from Section 2.1.2, that this implies that the expansion of
the evolution operator, and therefore the output state, should take the form of the
time-ordered Dyson series.

The spectral properties of the down-converted state have been extensively analysed
to first order in the output state, see e.g. [37]. To first order, a simple Taylor
expansion gives the same results as the Dyson series—when only one pair is created,
time ordering is not relevant. In this chapter, however, we consider the output state
to higher orders, truncating the output state beyond the 6-photon term.

As prescribed, we take the Dyson series expansion, however, it would be considerably
easier for future calculations to use the Taylor series. We therefore aim to identify
if there are any conditions under which the Taylor series is a good approximation.

As expected, the Taylor series predicts higher-order states that consist of uncorre-
lated pairs of photons—the two photons in each pair are entangled in frequency,
but the pairs are independent from each other. The Dyson series, however, predicts
four-photon frequency-entangled states at second order and six-photon frequency-
entangled states at third order. Interference between the fields within the crystal
leads to some cancellation of the amplitudes. At second order, this leaves a two-
photon state identical to that predicted by the Taylor series. At third order, there
is a difference between the two series, as will be discussed within this chapter.

This chapter is organised as follows. In Section 6.1, we introduce the Taylor and
Dyson series expansions of the down-converted state. In Section 6.2, we evaluate
the state according to the Dyson series. In Section 6.3, we compare these results
with those predicted by the Taylor series expansion. In Section 6.4, we conclude.

83
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6.1 Type II SPDC Hamiltonian

Recall from equation 2.67 that the down-converted state is given by

|ψpdc� = T e−
i
�

R∞
−∞ dtĤ(t)|ψ(t0)� . (6.1)

where T is the time-ordering operator and the Hamiltonian is

Ĥ(t) = AL

���
dωidωsdωpf(ωi, ωs, ωp)ei∆ωt

â
†
i
(ωi)â†s(ωs) + H.c. , (6.2)

where

f(ωi, ωs, ωp) = α(ωp)Φ(∆k(ωi, ωs, ωp)) , (6.3)

is the joint spectral amplitude, α(ωp) is the pump function and

Φ(∆k(ωi, ωs, ωp)) = sinc
�1

2
∆k(ωi, ωs, ωp)L

�
(6.4)

is the phase-matching function. ∆k(ωi, ωs, ωp) = ki(ωi) + ks(ωs) − kp(ωp) is the
phase mismatch and ∆ω = ωi + ωs − ωp.

The Taylor and Dyson series expansions give the state in equation 2.63 to third
order, as follows.

|Ψpdc�t ≈
1√
Nt

�
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� ∞
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+
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� 1
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dt3Ĥ(t3)|0�

�
.

(6.5)

|Ψpdc�d ≈
1√
Nd
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1
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� 1
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�
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(6.6)

where |Ψpdc�t and |Ψpdc�d are the truncated states according to the Taylor and
Dyson series respectively. Nt and Nd are normalisation constants which ensure that
the probabilities sum to unity. Notice that the first and second terms are the same
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for both states, while the third and fourth terms differ by a scaling factor and the
integration limits. The Dyson series correctly orders events, while the Taylor series
considers all ordering equivalent and then rescales.

Consider the second order term of the Dyson series (the third term in equation 6.6).
The limits of integration represent an ordering of the time variables t1 and t2, such
that t1 > t2, as shown by the shaded integration region in Figure 6.1 a).

..
.

...

a) b)

Figure 6.1: Integration region for a) second order term and b) third order term. The
integration regions continue to infinity beyond the limits of the plotting region.

This specifies the particular time order in which the two pairs are created. This
scenario is represented by the cartoon in figure 6.2 a).

a) b)

Figure 6.2: Cartoon depicting the different permutations of the order in which two pairs
of photons are created, as the pump field propagates along the length of the crystal. Unlike
the Dyson series, the Taylor series does not distinguish between the events in a) and b)
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If it were the case that the Hamiltonian did commute with itself at all times then
Ĥ(t1)Ĥ(t2) would equal Ĥ(t2)Ĥ(t1). It wouldn’t matter which pair was created first
and therefore the two scenarios presented in figure 6.2 a) and b) would be indistin-
guishable. Considering one permutation would be equivalent to taking the sum of
all permutations and dividing by that number—in this case, two. The advantage
of doing so is that the time integration can be taken to be over all time, rendering
the integrals much simpler. This is effectively what is done when using the Taylor
series.

Similarly, at third order, there are six possible permutations of the three Hamiltoni-
ans. The Dyson series expansion considers only one particular permutation, where
t1 > t2 > t3, as shown by the shaded integration region in Figure 6.3 b), while the
Taylor series doesn’t distinguish between them and therefore considers the average
of all six of the permutations shown in figure 6.3. As a sanity check, we confirm that
the sum of all six permutations yields the same results for both series. This can be
found in Appendix B.2.

f)e)d)

a) b) c)

Figure 6.3: Cartoon depicting the different permutations of the order in which three pairs
of photons are created, as the pump field propagates along the length of the crystal. Unlike
the Dyson series, the Taylor series does not distinguish between the events in a)-f)
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6.2 Evaluating the Dyson series expansion

The down-converted state in equation 6.6 can be written as follows

|Ψpdc�d =
1√
Nd

�
|Ψ(0)

pdc�d + |Ψ(1)
pdc�d + |Ψ(2)

pdc�d + |Ψ(3)
pdc�d

�
, (6.7)

where |Ψ(n)
pdc�d represents the nth expansion of |Ψpdc�d and

|Ψ(0)
pdc�d = |0� , (6.8)

|Ψ(1)
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1
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� ∞

−∞
dt1Ĥ(t1)|0� , (6.9)
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−∞
dt2Ĥ(t2)|0� , (6.10)
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−∞
dt2Ĥ(t2)
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dt3Ĥ(t3)|0� . (6.11)

6.2.1 First Order Term

The first order terms can be calculated by substituting the Hamiltonian in Equation
6.2 into Equation 6.9

|Ψ(1)
pdc�d =

1
i�

� ∞

−∞
dt1Ĥ(t1)|0� (6.12)

=
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†
i
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i
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= A
���

dωidωsdωpf(ωi, ωs, ωp)δ(∆ω)â†
i
(ωi)â†s(ωs)|0� (6.15)

= A
��

dωidωsf(ωi, ωs, ωi + ωs)â†i (ωi)â†s(ωs)|0� , (6.16)

where A = 2πAL/i� and f(ωi, ωs, ωp) is defined in equation 6.3. This corresponds
to a state consisting of two photons, of frequencies ωi and ωs, with a joint spectral
amplitude f(ωi, ωs, ωi + ωs). The frequencies of the down-converted photons are
constrained by energy conservation according to ωi + ωs = ωp, where ωp is the
frequency of the pump photon. A schematic of this process is shown in figure 6.4 a).
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Figure 6.4: Schematic diagrams demonstrating the energy conservation relationships be-
tween the pump, idler and signal photons for the creation of a) two photons b) four photons
and c) six photons, via down-conversion. The amplitudes below each diagram are the cor-
responding amplitudes for the given down-conversion event.
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6.2.2 Second Order Term

To calculate the second order term, substitute the Hamiltonian in Equation 6.2 into
Equation 6.10
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dt1Ĥ(t1)

�
t1

−∞
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†
s(ω

�
s) + f

∗(ω�i, ω
�
s, ω

�
p)e
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(6.17)

Some of the terms in the above equation will go to zero due to the annihilation of
the vacuum state. Omitting these terms and expanding the brackets, gives
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†
i
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†
s(ω

�
s)

+ f
∗(ω�i, ω

�
s, ω

�
p)f(ω�i, ω

�
s, ω

�
p)e

−i∆ωt1e
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(6.18)

We can write the state in terms of the joint spectral amplitudes of the down-
converted photons, such that
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pdc�d =
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(6.19)

where A = 2πAL/i�. The first term corresponds to the vacuum state while the
second term corresponds to the creation of four photons. By inspection of the state
in equation 6.18, we can see that the joint spectral amplitude for the four-photon
term must be
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(6.20)

To evaluate the integrals over time, we first perform a change of variables, as detailed
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in Appendix B.7.1, giving
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where r = t1+t2 and s = t1−t2. Now we can evaluate the time integrals, as detailed
in Appendix B.8, to give
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We can therefore write
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is the amplitude for the creation of two independent pairs of photons, each with joint
spectral amplitude f(ωi, ωs, ωp) as defined in equation 6.3. The frequencies of each
of the down-converted pairs are independently constrained by energy conservation
according to ωi+ωs = ωp and ω�

i
+ω�s = ω�p, where ωp and ω�p are the frequencies of the

pump photons. A schematic of this process is shown in figure 6.4 b). Furthermore,
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(6.26)

can be interpreted as the amplitude for the creation of a four-photon entangled state.
The frequencies of these photons are constrained by a combined energy conservation
condition ωi +ωs +ω�

i
+ω�s = ωp +ω�p. A schematic of this process is shown in figure

6.4 b). However, we find that due to destructive interference inside the crystal, this
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term goes to zero. To see this, consider the state
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Where we have written equation 6.26 as a sum of two terms. If we make the substi-
tution ωj → ω�

j
and vise-versa, in the second term, where j = i, s, p, we get
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= 0 (6.29)

Therefore, the amplitude for the four-photon state simplifies to

G2(ωi, ωs, ω
�
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i, ω

�
s) , (6.30)

The amplitude for the correction to the vacuum state also simplifies to

G0 = F0 =
��

dωidωs|f(ωi, ωs, ωi + ωs)|2 , (6.31)

as is detailed in Appendix B.4.

6.2.3 Third Order Term

For the third order term, we substitute the Hamiltonian in Equation 6.2 into Equa-
tion 6.11
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�
|0�

(6.32)
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Expanding the brackets and omitting terms that go to zero, due to the annihilation
of the vacuum, gives
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†
i
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i
(ω��i )â†s(ω
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We can write the state in terms of the joint spectral amplitudes of the down-
converted photons, such that
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(6.34)

where A = 2πAL/i�. The first term corresponds to the creation of two photons
while the second term corresponds to the creation of six photons. By inspection
of the state in equation 6.33, we can see that the joint spectral amplitude for the
six-photon term must be

G3 = G3(ωi, ωs, ω
�
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�
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��
i , ω��s ) (6.35)
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To evaluate the integrals over time, we first perform a change of variables, as detailed
in Appendix B.7.2, giving

(6.37)
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where q = t1 + t2 + t3, r = t1 − t2 and s = t2 − t3. Now we can evaluate the time
integrals, as detailed in Appendix B.8, to give
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We can therefore write
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where
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is the amplitude for the creation of three independent pairs of photons, each with
joint spectral amplitude f(ωi, ωs, ωp) as defined in equation 6.3. The frequencies of
each of the down-converted pairs are independently constrained by energy conser-
vation according to ωi + ωs = ωp, ω�

i
+ ω�s = ω�p and ω��

i
+ ω��s = ω��p , where ωp, ω�p and

ω��p are the frequencies of the pump photons. A schematic of this process is shown
in figure 6.4 c). Furthermore,
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can be interpreted as the amplitude for the creation of a six-photon entangled state.
The frequencies of these photons are constrained by a combined energy conservation
condition ωi + ωs + ω�
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and
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can be interpreted as the amplitude for the creation of a four-photon entangled
state along with an independent photon-pair. The frequencies of these photons are
constrained by a combined energy conservation condition ωi +ωs +ω�

i
+ω�s = ωp +ω�p
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as well as an independent condition ω��
i

+ ω��s = ω��p
1. A schematic of these processes

is shown in figure 6.4 c). However, we find that due to destructive interference inside
the crystal, these terms go to zero. Motivated by equation 6.42, we write the state
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If we make the substitution ωj → ω��
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and vise-versa, in the second term, where
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= 0 . (6.50)

Therefore, the amplitude for the six-photon state simplifies to
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The amplitude for the correction to the two-photon state also simplifies to
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as is detailed in Appendix B.5, where
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1This is the case for the state described by g3a. For the state described by g3b, the energy
conservation conditions are ωi + ωs + ω��i + ω��s = ωp + ω��p and ω�i + ω�s = ω�p
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and
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We define
�

[i,j]=P[a,b]

f(i, j) = f(a, b) + f(b, a) . (6.55)

6.3 Comparing With the Taylor Series

The terms of the state in Equation 6.7 can be summarised as follows
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where we have made use of the result that G0 = F0 and G2(ωi, ωs, ω�i, ω
�
s) =

F2(ωi, ωs, ω�i, ω
�
s) as calculated in the previous section.
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Following a similar procedure (detailed in Appendix B.3), we find that the corre-
sponding terms from the Taylor expansion are
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(6.63)

Comparing equations 6.56-6.58 with equations 6.60-6.62, we notice that up to sec-
ond order, the two series give identical results. The difference reveals itself when
comparing the third order terms, in equations 6.59 and 6.63, at the level of the joint
spectral amplitudes, which are

Taylor Series Dyson Series
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�

The key differences are an overall increase in the amplitude by a factor of 3/2 as well
as an additional amplitude for a six-photon entangled state that is not predicted by
the Taylor series. Notice that the nth order term doesn’t directly correspond to an
n photon state. We can however, group the state in terms of the photon numbers.
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where |Ψn,n�d represents the 2n-photon component of the state and
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(6.67)

In this form, we see that the Dyson series predicts a modification to the two- and
six-photon number amplitudes in such a way that the output state is no longer
Gaussian.

6.4 Discussion

Expanding to first order, we see no difference between the Dyson and Taylor series.
At second order, there appears to be an additional phenomenon for creating four-
photon states in the Dyson series, however, these events are not observable due to
destructive interference of the fields within the crystal. Only at third order, do we see
a real difference between the two series. There is a similar additional phenomenon for
creating six-photon states, however, only some of these events destructively interfere.
The Dyson series predicts the creation of three independent pairs of photons as well
as a six-photon entangled state whose energies sum nontrivially to the energy of
three pump photons. Additionally, there is a curious factor of 3/2 in front of the
six-photon amplitude predicted by the Dyson series. There is an expectation that
under some conditions, the amplitudes predicted by the series will interfere in a way
that cancels this factor, however, this has not yet been explored successfully. While
using a monochromatic pump will not, in general, reduce the Dyson series to the
Taylor series, sufficiently narrow filtering around the frequencies which correspond to
the generation of independent pairs—e.g. by placing the setup inside a cavity—may
have this effect.

The implications of these conclusions are two-fold. If an experiment is performed in
a regime where four-photon terms are significant, while six-photon terms are not2,
then it is sufficient to use the Taylor series expansion to model this experiment.
However, there also seems to be the possibility of creating 6-photon entangled states
if the experiment is pumped at pump powers high enough to make the 3rd order
events significant. In this regime, the Dyson series predicts a modification to the
two- and six-photon number amplitudes in such a way that the output state is no
longer Gaussian.

2This was the case in Chapter 4.



Chapter 7

Conclusion

This thesis focused on the investigation of non-classical states of light generated via
spontaneous parametric down-conversion, in the context of quantum computing and
quantum information.

Superpositions of coherent states, known as kitten states, can be approximated
by subtracting photons from a single-mode down-converted state, i.e. a squeezed
vacuum state. We found that such a state turns out to be a great resource for
high-fidelity teleportation of small-amplitude kitten states. In-principle teleporta-
tion of arbitrary coherent-state superpositions can be demonstrated using photon-
subtracted squeezed vacuum states as inputs to an entanglement swapping protocol.
This also works with high fidelity at small amplitudes.

Our analysis of the effects of imperfect source preparation and inefficient detection
has shown this setup to be fragile in this regard. It would be possible to implement
high-fidelity teleportation of states like the coherent state and the even cat state
with a lossy system, but states which are more similar to the odd cat state degrade
very quickly, even with low loss. It looks like this fragility is a property of the gate,
and not just the approximation of the states, however, at higher amplitudes, the
fidelity is additionally affected by loss when using the approximate states.

As teleportation is the implementation of the identity gate, our results suggest that
demonstration of more complicated non-trivial gates, as introduced by Lund et al.
[41], will be practical in the foreseeable future. Another extension could include the
analysis and experimental implementation of the teleportation of arbitrary coherent-
state qubits, that were recently realised and charactersied by Neergaard-Nielsen et
al. [77].

While this work considered a simplified single-frequency-mode picture, the remainder
of this thesis dealt with the spectral properties of the states generated by paramet-
ric down-conversion. In such a scenario, the down-converted photons are typically
entangled in the frequency degree of freedom.

We first modeled the heralded preparation of one- and two-photon states, conditional
on the detection of one or two photons, respectively, in one of the down-converted

99
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modes. Spectral entanglement, combined with the low spectral resolution of the
heralding detector, renders the heralded state mixed in frequency—an undesirable
consequence. The effects of spectral filtering of the heralding state were analysed
to determine an optimal method for generating pure photon-number states. We
calculated the output state to second order in photon number and presented analyt-
ical expressions for the heralded one- and two-photon state after the idler mode is
spectrally filtered using a Gaussian filter and detected with an inefficient detector.
The heralded signal state was then characterised by its g

(2) and purity. In addition,
we calculated the fidelity of the heralded state with the desired ideal Fock state.

As a physical example, we modeled a type II ppKTP waveguide, pumped by lasers at
wavelengths of 400 nm, 788 nm and 1.93 µm, corresponding to a highly correlated,
a symmetric separable and an asymmetric separable joint spectral amplitude, re-
spectively. We found that in the first example, where no effort was made to perform
any group velocity matching, the results were states with very low purity. After
strong spectral filtering, Fock states with arbitrarily high purity could be achieved,
however at very low probabilities of success.

By employing group velocity matching, it is possible to generate higher purity states,
however, some additional filtering is still required to achieve very high purity states.
High-purity two-photon Fock states were also possible. While results were com-
parable for the symmetric and asymmetric examples, this was due to our choice of
physical parameters. The asymmetric case would be able to achieve higher fidelities,
with no filtering, by choosing a longer waveguide.

As an alternative to filtering the side lobes of the sinc-shaped joint spectral profile, we
also developed a technique for controlling the spectral profile of the down-converted
photons. By exploiting the dependence of the effective nonlinearity of a periodically
poled crystal on its poling order, it was possible to tailor a nonlinearity profile and
therefore the phasematching function of the down-converted photons.

We tailored a spectral photon-pair amplitude with a Gaussian profile, which is gen-
erally optimal for optical mode matching—a critical consideration in any experiment
involving single photons. We designed a custom-poled KTP crystal accordingly and
verified the joint spectral amplitude of the output photons in two-photon interference
experiments.

It would be interesting to apply our idea of an engineered material nonlinearity
to four-wave-mixing photon-pair sources in photonic-crystal fibres, where the sinc-
shaped phase-matching function is a major problem.

Finally, we considered the validity of the simpler, yet not strictly correct, Taylor
series expansion of the unitary operator which governs the evolution of the fields
within the crystal. Since the multimode down-conversion Hamiltonian does not
commute with itself at all times, the expansion should take the form of the time-
ordered Dyson series. By expanding the evolution operator to third order, it was
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revealed that both series expansions gave identical predictions to second order. At
third order, in addition to the six-photon state predicted by the Taylor series, which
consists of three independent pairs of photons, the Dyson series predicts a six-photon
entangled state. Additionally, there is a curious factor of 3/2 in front of the six-
photon amplitude predicted by the Dyson series. A future extension of this work
could be to identify if there are any conditions under which the Dyson series simplifies
to the Taylor series. This would occur if the third order amplitudes interfere in a
way that cancels this factor of 3/2. A plausible candidate for this is the limit where
the length of the crystal goes to infinity.
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Appendix A

Tailoring the Nonlinearity of a
Nonlinear Crystal

A.1 Gaussian Approximation to Sinc Function

To determine the exact shape of the target Gaussian function for the nonlinearity
profile, we match the width of the desired Gaussian PMF with the sinc PMF of the
form, sinc(∆kLeff/2), that would be generated by a standard crystal. The appro-
priate function is ΦG(ωi, ωs) = exp(−γ(∆kLeff/2)2) where the parameter γ ≈ 0.193
is derived from matching the FWHM of the two functions. We refer to Leff as the
effective length, as it does not correspond to the actual length of the final Gaussian
shaped crystal, but rather the length of the hypothetical standard crystal.

A.2 Detailed Model

We modeled each section of the crystal as having a nonlinearity inversely propor-
tional to the poling order m. This approximation is only valid for a large number
of domains in each section. Here we calculate the PMF by explicitly considering
the contribution from each domain. The nonlinearity profile χd(z) will consist of
domains of nonlinear coefficients ±χ(2), with sign changes occurring at positions cor-
responding to the poling order and duty cycle (this is the case for the entire length
of a typical periodically poled crystal). For example, in the section corresponding to
m = 3—where the duty cycle is 50%—the sign changes every 3Λ, while for m = 6—
where the duty cycle is ≈ 41.6%—the sign changes from “+” to “−” after 5Λ and
back again after 7Λ. The resulting PMF takes the form

Φd(∆kp) = χ(2)
�

j

sj(e−i∆kpzj − e−i∆kpzj−1) , (A.1)
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where sj is the sign of the jth domain and zj−1 − zj is the width of each domain.
Fig. A.1 shows that as ∆kp departs from 0, the two models begin to deviate. How-
ever, as we discuss in the main text, there is very good agreement between the basic
and detailed models in the region of interest, i.e. around ∆kp = 0.
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Figure A.1: Comparison between basic and domain-by-domain models
Phase matching functions generated from the basic model (black solid line) and the
detailed model (light red line). The inset shows a magnified portion of the PMFs,
detailing the deviation between the models.



Appendix B

Time-ordering in Spontaneous
Parametric Down-conversion

B.1 Commutativity of the SPDC Hamiltonian

We would like to show that the SPDC Hamiltonian doesn’t commute with itself at
all times, i.e. that the commutator is zero. The commutator is

[Ĥ(t1), Ĥ(t2)] = Ĥ(t1)Ĥ(t2)− Ĥ(t2)Ĥ(t1) (B.1)

= A
2
�

L/2

−L/2
dz

�
L/2

−L/2
dz
�
���

dωidωsdωp

���
dω�idω�sdω�p

×
��

e−i∆k(ωi,ωs,ωp)zei∆ωt1α(ωp)â†i (ωi)â†s(ωs)

+ ei∆k(ωi,ωs,ωp)ze−i∆ωt1α∗(ωp)âi(ωi)âs(ωs)
�

×
�
e−i∆k(ω�i,ω

�
s,ω�p)z�ei∆ω�t2α(ω�p)â

†
i
(ω�i)â

†
s(ω

�
s)

+ ei∆k(ω�i,ω
�
s,ω�p)z�e−i∆ω�t2α∗(ω�p)âi(ω�i)âs(ω�s)

�

−
�
e−i∆k(ω�i,ω

�
s,ω�p)z�ei∆ω�t2α(ω�p)â

†
i
(ω�i)â

†
s(ω

�
s)

+ ei∆k(ω�i,ω
�
s,ω�p)z�e−i∆ω�t2α∗(ω�p)âi(ω�i)âs(ω�s)

�

×
�
e−i∆k(ωi,ωs,ωp)zei∆ωt1α(ωp)â†i (ωi)â†s(ωs)

+ ei∆k(ωi,ωs,ωp)ze−i∆ωt1α∗(ωp)âi(ωi)âs(ωs)
��

(B.2)
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Make the substitution that z → −z and z
� → −z

� and invert the limits of integration
in the terms containing e−i∆k(ωi,ωs,ωp)z and e−i∆k(ωi,ωs,ωp)z� .

[Ĥ(t1), Ĥ(t2)] = A
2
�

L/2

−L/2
dz

�
L/2

−L/2
dz
�
���

dωidωsdωp

���
dω�idω�sdω�p

× ei∆k(ωi,ωs,ωp)zei∆k(ω�i,ω
�
s,ω�p)z�

×
��

ei∆ωt1α(ωp)â†i (ωi)â†s(ωs) + e−i∆ωt1α∗(ωp)âi(ωi)âs(ωs)
�

×
�
ei∆ω�t2α(ω�p)â

†
i
(ω�i)â

†
s(ω

�
s) + e−i∆ω�t2α∗(ω�p)âi(ω�i)âs(ω�s)

�

−
�
ei∆ω�t2α(ω�p)â

†
i
(ω�i)â

†
s(ω

�
s) + e−i∆ω�t2α∗(ω�p)âi(ω�i)âs(ω�s)

�

×
�
ei∆ωt1α(ωp)â†i (ωi)â†s(ωs) + e−i∆ωt1α∗(ωp)âi(ωi)âs(ωs)

��

(B.3)

Expand the brackets.

[Ĥ(t1), Ĥ(t2)] = A
2
�

L/2

−L/2
dz

�
L/2

−L/2
dz
�
���

dωidωsdωp

���
dω�idω�sdω�p

× ei∆k(ωi,ωs,ωp)zei∆k(ω�i,ω
�
s,ω�p)z�

×
�
ei∆ωt1ei∆ω�t2α(ωp)α(ω�p)

×
�
â
†
i
(ωi)â†i (ω

�
i)â

†
s(ωs)â†s(ω

�
s)− â

†
i
(ω�i)â

†
i
(ωi)â†s(ω

�
s)â

†
s(ωs)

�

+ e−i∆ωt1ei∆ω�t2α∗(ωp)α(ω�p)

×
�
âi(ωi)â†i (ω

�
i)âs(ωs)â†s(ω

�
s)− â

†
i
(ω�i)âi(ωi)â†s(ω

�
s)âs(ωs)

�

+ ei∆ωt1e−i∆ω�t2α(ωp)α∗(ω�p)

×
�
â
†
i
(ωi)âi(ω�i)â

†
s(ωs)âs(ω�s)− âi(ω�i)â

†
i
(ωi)âs(ω�s)â

†
s(ωs)

�

+ e−i∆ωt1e−i∆ω�t2α∗(ωp)α∗(ω�p)

×
�
âi(ωi)âi(ω�i)âs(ωs)âs(ω�s)− âi(ω�i)âi(ωi)âs(ω�s)âs(ωs)

��

(B.4)
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The first and last terms go to zero.

[Ĥ(t1), Ĥ(t2)] = A
2
�

L/2

−L/2
dz

�
L/2

−L/2
dz
�
���

dωidωsdωp

���
dω�idω�sdω�p

× ei∆k(ωi,ωs,ωp)zei∆k(ω�i,ω
�
s,ω�p)z�

×
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e−i∆ωt1ei∆ω�t2α∗(ωp)α(ω�p)

×
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âi(ωi)â†i (ω

�
i)âs(ωs)â†s(ω

�
s)− â

†
i
(ω�i)âi(ωi)â†s(ω

�
s)âs(ωs)

�

+ ei∆ωt1e−i∆ω�t2α(ωp)α∗(ω�p)

×
�
â
†
i
(ωi)âi(ω�i)â

†
s(ωs)âs(ω�s)− âi(ω�i)â

†
i
(ωi)âs(ω�s)â

†
s(ωs)

��

(B.5)

Substitute ωj → ω�
j

and z → z
� and vise-versa in the second term.

[Ĥ(t1), Ĥ(t2)] = A
2
�

L/2

−L/2
dz

�
L/2

−L/2
dz
�
���

dωidωsdωp

���
dω�idω�sdω�p

× ei∆k(ωi,ωs,ωp)zei∆k(ω�i,ω
�
s,ω�p)z�

×
�
e−i∆ωt1ei∆ω�t2α∗(ωp)α(ω�p)

×
�
âi(ωi)â†i (ω

�
i)âs(ωs)â†s(ω

�
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†
i
(ω�i)âi(ωi)â†s(ω

�
s)âs(ωs)

�

+ ei∆ω�t1e−i∆ωt2α(ω�p)α
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×
�
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†
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(ω�i)âi(ωi)â†s(ω

�
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�
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�
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��

(B.6)

= A
2
�

L/2

−L/2
dz

�
L/2

−L/2
dz
�
���

dωidωsdωp

���
dω�idω�sdω�p

× α(ω�p)α
∗(ωp)ei∆k(ωi,ωs,ωp)zei∆k(ω�i,ω

�
s,ω�p)z�

×
�
e−i∆ωt1ei∆ω�t2 − ei∆ω�t1e−i∆ωt2

�

×
�
âi(ωi)â†i (ω

�
i)âs(ωs)â†s(ω

�
s)− â

†
i
(ω�i)âi(ωi)â†s(ω

�
s)âs(ωs)

�

(B.7)

Since the integrals are only over positive frequencies, this expression is nonzero.
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B.2 Sanity Check

As a sanity check, we compare the sum of all six permutations within the third order
term of both the Taylor and Dyson series. They should give the same answer. For
the Taylor series, we can write

P6t =
1
3!

� ∞

−∞
dt1

� ∞

−∞
dt2

� ∞

−∞
dt3

×
�
Ĥ(t1)Ĥ(t2)Ĥ(t3) + Ĥ(t1)Ĥ(t3)Ĥ(t2) + Ĥ(t2)Ĥ(t1)Ĥ(t3)

+ Ĥ(t2)Ĥ(t3)Ĥ(t1) + Ĥ(t3)Ĥ(t1)Ĥ(t2) + Ĥ(t3)Ĥ(t2)Ĥ(t1)
�
.

(B.8)

More specifically, looking at just the six-photon state, we can write

|P6t� =
1
3!

�
AL

i�

�3
���

dωidωsωp

���
dω�idω�sω

�
p
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dω��i dω��sω��p
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�
s, ω

�
p)f(ω��i , ω��s , ω��p)

� ∞

−∞
dt1

� ∞

−∞
dt2

� ∞
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dt3
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i∆ω�t2e
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i∆ω��t3

+ e
i∆ωt2e

i∆ω�t3e
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i∆ω��t1
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(ωi)â†s(ωs)â†i (ω

�
i)â

†
s(ω

�
s)â

†
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(ω��i )â†s(ω

��
s )|0� .

(B.9)

Relabeling the time variables, and then performing the time integrals, yields

|P6t� =
�

AL

i�

�3
���

dωidωsωp

���
dω�idω�sω

�
p

���
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=
�2πAL
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†
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(B.11)
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For the Dyson series, we can write the sum of all permutations as

P6d =
� ∞

−∞
dt1

�
t1

−∞
dt2

�
t2

−∞
dt3

×
�
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(B.12)

More specifically, looking at just the six-photon state
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Relabeling the time variables yields
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†
i
(ω��i )â†s(ω
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We can make use of the following identities1

� ∞
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dt2
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dt1
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dt2
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� ∞
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to write
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†
i
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Now perform a change of variables with respect to the time integrals according to
B.7.1
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1It is easy to convince oneself of these identities by plotting the 3-dimensional integration regions
in, e.g, Mathematica.
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Performing the integral over the new time variables, according to Appendix B.8,
yields
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After cancellation of all the imaginary terms, we get

|P6d� =
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†
i
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(B.22)

= |P6t� , (B.23)

where |P6t� is defined in equation B.11.
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B.3 Evaluating the Taylor series expansion

The down-converted state in equation 6.6 can be written as follows

|Ψpdc�t =
1√
Nt

�
|Ψ(0)

pdc�t + |Ψ(1)
pdc�t + |Ψ(2)

pdc�t + |Ψ(3)
pdc�t

�
, (B.24)

where |Ψ(n)
pdc�t represents the nth expansion of |Ψpdc�t and

|Ψ(0)
pdc�t = |0� , (B.25)

|Ψ(1)
pdc�t =

1
i�

� ∞

−∞
dt1Ĥ(t1)|0� , (B.26)

|Ψ(2)
pdc�t =

� 1
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�2
� ∞

−∞
dt1Ĥ(t1)

� ∞

−∞
dt2Ĥ(t2)|0� , (B.27)

|Ψ(3)
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� 1
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dt2Ĥ(t2)
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dt3Ĥ(t3)|0� . (B.28)

B.3.1 First Order Term

The first order state can be calculated by substituting the Hamiltonian in Equation
6.2 into Equation B.26

|Ψ(1)
pdc�t =

1
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−∞
dt1Ĥ(t1)|0� (B.29)
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= A
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dωidωsf(ωi, ωs, ωi + ωs)â†i (ωi)â†s(ωs)|0� , (B.33)

where A = 2πAL/i� and f(ωi, ωs, ωp) is defined in equation 6.3. This corresponds
to a state consisting of two photons, of frequencies ωi and ωs, with a joint spectral
amplitude f(ωi, ωs, ωi + ωs). The frequencies of the down-converted photons are
constrained by energy conservation according to ωi + ωs = ωp, where ωp is the
frequency of the pump photon. A schematic of this process is shown in figure 6.4 a).
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B.3.2 Second Order Term

To calculate the second order term, substitute the Hamiltonian in Equation 6.2 into
Equation B.27
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(B.34)

Some of the terms in the above equation will go to zero due to the annihilation of
the vacuum state. Omitting these terms and expanding the brackets, gives
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(B.35)

We can write the state in terms of the joint spectral amplitudes of the down-
converted photons, such that

|Ψ(2)
pdc�d =
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�
i)â
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(B.36)

where A = 2πAL/i�. The first term corresponds to the vacuum state while the
second term corresponds to the creation of four photons. By inspection of the state
in equation B.35, we can see that the joint spectral amplitude for the four-photon
term must be
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s) =

1
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Evaluating the time integrals yields

F2(ωi, ωs, ω
�
i, ω

�
s) =

��
dωpdω�pf(ωi, ωs, ωp)f(ω�i, ω

�
s, ω

�
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= f(ωi, ωs, ωi + ωs)f(ω�i, ω
�
s, ω

�
i + ω�s) (B.39)

which is the amplitude for the creation of two independent pairs of photons, each
with joint spectral amplitude f(ωi, ωs, ωp) as defined in equation 6.3. The frequen-
cies of each of the down-converted pairs are independently constrained by energy
conservation according to ωi + ωs = ωp and ω�

i
+ ω�s = ω�p, where ωp and ω�p are the

frequencies of the pump photons. A schematic of this process is shown in figure 6.4
b).

The amplitude for the correction to the vacuum state is

F0 =
� 1

2π

�2
��

dωidωs

��
dω�idω�s

��
dωpdω�pf

∗(ωi, ωs, ωp)f(ω�i, ω
�
s, ω

�
p)

×
� ∞

−∞
dt1

� ∞

−∞
dt2e

−i∆ωt1e
i∆ω�t2δ(ωi − ω�i)δ(ωs − ω�s)

(B.40)

=
��

dωidωs

��
dω�idω�s

��
dωpdω�pf

∗(ωi, ωs, ωp)f(ω�i, ω
�
s, ω

�
p)

× δ(∆ω)δ(∆ω�)δ(ωi − ω�i)δ(ωs − ω�s)
(B.41)

=
��

dωidωs

��
dω�idω�sf

∗(ωi, ωs, ωi + ωs)f(ω�i, ω
�
s, ω

�
i + ω�s)

× δ(ωi − ω�i)δ(ωs − ω�s)
(B.42)

=
��

dωidωs|f(ωi, ωs, ωi + ωs)|2 , (B.43)
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B.3.3 Third Order Term

For the third order term, we substitute the Hamiltonian in Equation 6.2 into Equa-
tion B.28
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��
s ) + f

∗(ω��i , ω��s , ω��p)e−i∆ω��t3 âi(ω��i )âs(ω��s )
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Expanding the brackets and omitting terms that go to zero, due to the annihilation
of the vacuum, gives
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�
s)

+ δ(ωi − ω��i )δ(ωs − ω�s)â
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(B.45)
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We can write the state in terms of the joint spectral amplitudes of the down-
converted photons, such that
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(B.46)

where the first term corresponds to the creation of two photons while the second term
corresponds to the creation of six photons. By inspection of the state in equation
B.45, we can see that the joint spectral amplitude for the six-photon term must be

F3 = F3(ωi, ωs, ω
�
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��
i , ω��s ) (B.47)
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Evaluating the time integrals yields

F3 =
���

dωpdω�pdω��pf(ωi, ωs, ωp)f(ω�i, ω
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= f(ωi, ωs, ωi + ωs)f(ω�i, ω
�
s, ω

�
i + ω�s)f(ω��i , ω��s , ω��i + ω��s ) (B.50)

which is the amplitude for the creation of three independent pairs of photons, each
with joint spectral amplitude f(ωi, ωs, ωp) as defined in equation 6.3. The frequen-
cies of each of the down-converted pairs are independently constrained by energy
conservation according to ωi + ωs = ωp, ω�

i
+ ω�s = ω�p and ω��

i
+ ω��s = ω��p , where ωp,

ω�p and ω��p are the frequencies of the pump photons. A schematic of this process is
shown in figure 6.4 c).
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The amplitude for the correction to the two-photon state is
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and
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Inserting equations B.55 and B.58 into equation B.52 gives
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B.4 Correction to the vacuum state amplitude using the
Dyson series

The amplitude for the vacuum term correction is
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Details on the change of variables performed between equation B.60 and B.61 can be
found in Appendix B.7.1. Details on the evaluation of the integral in equation B.61
can be found in Appendix B.8. Since the function f(ωi, ωs, ωp) is typically even, the
second term in the integrand will be an odd function, and therefore, that part of
the integral will go to zero. This gives

G0 = F0 , (B.65)

where F0 is defined in Equation B.43.
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B.5 Correction to the two-photon state amplitude using
the Dyson series

Consider the two-photon part of the state in equation 6.34.
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Perform a change of variables for the time integrals (refer to Appendix B.7.2 for
details)
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Evaluate the time integrals (refer to Appendix B.8 for details)
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†
s(ω

�
s) + δ(ωi − ω�i)δ(ωs − ω��s )â†
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where A = 2πAL/i�. Expand some brackets
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Evaluate the pump integrals, where possible, using the delta functions.
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i
(ω�i)â
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Notice that it is possible to cancel the terms containing i/π.
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Once this is done, we expand some brackets to give
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Evaluate the idler and signal integrals, where possible, using the delta functions.

|Ψ(3)
pdc,2�d =

A3

4

�
AL

i�

�3� ��
dωidωs

��
dω�idω�sâ
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Finally, perform a change of variables among the signal and idler frequencies, in
order to collect like terms in the creation operators.
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Using this form of the two-photon component of the state, we can write the state
third order term in terms of the joint spectral amplitudes of the down-converted
photons, such that
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From Equation B.73, we can see that the joint spectral amplitude for the two-photon
component is

G1(ωi, ωs) =
3
2
�
F1(ωi, ωs) + h1(ωi, ωs)

�
, (B.75)

where F1 is defined in Equation B.59,
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and
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B.6 Permutations

�

[i,j]=P[a,b]

f(i, j) = f(a, b) + f(b, a) (B.77)

�

[i,j,k]=P[a,b,c]

f(i, j, k) = f(a, b, c) + f(a, c, b) + f(b, a, c)

+ f(b, c, a) + f(c, a, b) + f(c, b, a)
(B.78)

�

[i,j,k]=P[a,a,b]

f(i, j, k) = f(a, a, b) + f(a, b, a) + f(b, a, a) (B.79)
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B.7 Change of Time Integration Variables

B.7.1 Two Dimensional

In the following time integrals, we can see that the limits of integration over t2

depend on the integration variable t1.

� ∞

−∞
dt1

�
t1

−∞
dt2 (B.80)

To solve these integrals, it is useful to perform a change of variables such that the two
integrals become independent. Figure B.1 shows how this can be done by inspection.

..
.

...

a)

..
.

...

b)
rs

Figure B.1: Time integration region for second-order term. a) indicates the original in-
tegration variables, while b) indicates the new, independent, integration variables. The
integration region continues to infinity beyond the limits of the plotting region.

The new integration variables are r = t1 + t2 and s = t1 − t2. Since the Jacobian is
2, dt1dt2 = 2drds and we can write

� ∞

−∞
dt1

�
t1

−∞
dt2 = 2

� ∞

−∞
dr

� ∞

0
ds (B.81)

B.7.2 Three Dimensional

In the third order term, we have the following dependent integrals over three time
variables.



§B.7 Change of Time Integration Variables 129

� ∞
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dt1
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t2

−∞
dt3 (B.82)

Once again, we would like to perform a change of variables in order to decouple them.
We repeat the same process as above, however, we now draw a three-dimesional
volume of integration. This is shown in figure B.2.

a) b)

Figure B.2: Time integration region for third-order term. a) indicates the original in-
tegration variables, while b) indicates the new, independent, integration variables. The
integration region continues to infinity beyond the limits of the plotting region.

The new integration variables are q = t1 + t2 + t3, r = t1 − t2 and s = t2 − t3. This
time, the change of variables was a bit more complicated and the Jacobian is 1/3.
This gives dt1dt2dt3 = dqdrds/3 and we can write

� ∞

−∞
dt1

�
t1

−∞
dt2

�
t2

−∞
dt3 =

1
3

� ∞

−∞
ds

� ∞

0
dr

� ∞

0
ds (B.83)
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B.8 Evaluate
�∞

0 ds exp(ixs)

� ∞

0
ds exp(ixs) =

� ∞

0
ds cos(xs) + i

� ∞

0
ds sin(xs) (B.84)

= lim
a→0

� ∞

0
ds sin(xs)e−as + i lim

a→0

� ∞

0
ds sin(xs)e−as (B.85)

= lim
a→0

a

a2 + x2
+ i lim

a→0

x

a2 + x2
(B.86)

= πδ(x) +
i
x

(B.87)

Alternatively, the solution can be found by taking the Fourier transform of a step
function.
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